• 제목/요약/키워드: hm 트리

검색결과 18건 처리시간 0.019초

결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘을 이용한 음성인식에 관한 연구 (A Study on Speech Recognition Using the HM-Net Topology Design Algorithm Based on Decision Tree State-clustering)

  • 정현열;정호열;오세진;황철준;김범국
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.199-210
    • /
    • 2002
  • 본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.

한국어 대어휘 음성DB를 이용한 HM-Net 음성인식 시스템의 성능평가 (Performance Evaluation of HM-Net Speech Recognition System using Korea Large Vocabulary Speech DB)

  • 오세진;김광동;노덕규;송민규;김범국;황철준;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2443-2446
    • /
    • 2003
  • 본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.

  • PDF

Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구 (A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.30-39
    • /
    • 2003
  • 본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.

  • PDF

문맥적응적 신경망 기반 화면내 예측의 트리 구조 반영 학습기법 분석 (Analysis of Training Method Using Tree Structure for Context Adaptive Neural Network-Based Intra Prediction)

  • 문기화;허승정;박도현;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.55-56
    • /
    • 2021
  • 최근, 딥러닝 및 인공신경망 기술의 발전으로 비디오 부호화 분야에서도 인공지능을 이용한 요소 기술에 대한 연구가 활발이 진행되고 있다. 본 논문에서는 주변 참조샘플로부터 문맥정보를 이용하여 현재블록을 예측하는 CNN 기반의 화면내 예측 모델을 구현하고, 비디오 부호화의 블록 분할 구조를 반영한 학습 기법에 따른 부호화 성능을 분석한다. 실험결과 HM(HEVC Test Model)에 구현한 문맥적응적 신경망 기반 예측 모델에서 트리 분할 구조를 반영한 학습이 HM16.19 대비 0.35% BD-rate 부호화 성능 향상을 보였다.

  • PDF

한국어 음성인식 성능향상을 위한 문맥의존 음향모델에 관한 연구 (A Study-on Context-Dependent Acoustic Models to Improve the Performance of the Korea Speech Recognition)

  • 황철준;오세진;김범국;정호열;정현열
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.9-15
    • /
    • 2001
  • 본 연구에서는 한국어 음성인식 성능향상을 위한 문맥의존 음향 모델을 개선하기 위하여 한국어 음성학적 지식과 결정트리를 접목한 음소결정트리 기반 상태분할 알고리즘으로 한국어에 적합한 문맥의존 음향 모델에 관해 고찰한다. HMM (Hidden Markov Model)의 각 상태를 네트워크로 연결하여 문맥의존 음향모델로 표현하는 HM-Net(Hidden Markov Network)이 있는데 이는 SSS(Successive State Splitting) 알고리즘으로 작성한다. 이 방법은 음향 모델의 상태공유관계와 모델의구조를 결정하는데 효율적이지만 모델을 학습할때 문맥환경에 따라 출현하지 않는 문맥이 존재하는 문제점이 있다 본 연구에서는 이러한 문제점을 해결하기 위해 2진 결정트리와 SSS 알고리즘의 장점을 결합하여 문맥방향 상태분할을 수행할 때 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어에 따라 상태분할 하는 방법으로서 PDT-SSS(Phonetic Decision Tree-based SSS) 알고리즘을 적용한다. 적용한 방법으로 작성한 문맥의존 음향 모델의 유효성을 확인하기 위해 국어공학센터 (KLE)m이 452 단어와 항공편 예약관련 200문장(YNU 200)에 대해 화자독립 음소, 단어 및 연속음성인식 실험을 수행하였다. 인식실험결과, 문맥 의존 음향모델에 대한 화자독립 음소, 단어 및 연속음성 인식실험에서 기존의 단일 HMM 모델보다 향상된 인식률을 보여, 한국어에 적합한 문맥의존 음향 모델을 작성하는데 한국어 음성학적 지식과 음소결정트리 기반 상태분할 알고리즘이 유효함을 확인하였다.

  • PDF

음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구 (A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting)

  • 오세진;황철준;김범국;정호열;정현열
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF

HEVC 코딩 트리 블록 분할 구조 고속 결정 방법 (A Fast Partition Structure Decision Method in a Coding Tree Block of HEVC)

  • 정순흥;김휘용
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.53-56
    • /
    • 2016
  • 본 논문에서는 HEVC 부호화시 코딩 트리 블록의 분할 구조를 고속 결정하는 방법을 제안한다. 코딩 트리블록은 다양한 크기의 코딩 블록으로 구성되어 부호화 효율을 향상시키지만, 구성되는 코딩 블록을 결정하기 위한 과정에서 많은 계산량을 필요로 하게 되어 부호화 시간을 증가시킨다. 제안하는 방법에서는 부호화 과정에서 복원된 잔차신호와 코딩 트리 블록의 분할 구조의 상관성을 이용하여 코딩 트리 블록의 분할 구조를 고속으로 결정하는 방법을 제시한다. 실험 결과를 통해 제안된 방법이 HM16.0 에 비해 random-access configuration 에서 50.98%, low-delay configuration 에서 43.77%의 부호화 시간을 감소시키는 것을 확인하였다. 이때, $BD-rate_{YUV}$ 증가는 각각 2.42%와 2.35%로 부호화 효율에는 미치는 영향은 낮았다.

  • PDF

HEVC의 분할 영역에서 효율적인 움직임 정보 표현 (Efficient Motion Information Representation in Splitting Region of HEVC)

  • 이동식;김영모
    • 한국멀티미디어학회논문지
    • /
    • 제15권4호
    • /
    • pp.485-491
    • /
    • 2012
  • 본 논문은 움직임 벡터와 함께 Coding Unit (CU)의 분할 정보를 표현하기 위해 쿼드트리 기반의 Coding Unit Tree (CUT)를 제안한다. 새로운 동영상 국제 표준안인 High Efficiency Video Coding (HEVC)는 높은 압축 효율을 위해 다양한 새로운 기술들을 채택하였다. 그리고 CU, prediction Unit (PU), 와 Transform Unit (TU)라는 분할 개념을 도입하였다. 그중 기본 부호화 단위인 CU는 H.264/AVC의 매크로 블록보다 다양한 크기를 제공하며 계층적인 구조를 가지고 있으며 쿼드트리 기반의 영상을 분할하고 처리한다. 이러한 구조는 유연성과 최적화를 이룰 수 있는 기반을 제공하고 있으나, 분할 정보에 대한 오버헤더가 발생한다. 복잡한 움직임 정보가 발생하면, 해당하는 정보를 전송하기 위해 다양한 신호가 발생한다. 본 논문에서는 이러한 다양한 신호들을 분석하고, 중복되는 정보를 제거하기 위한 알고리즘을 제안한다. 제안하는 알고리즘 은 기본 블록인 $2{\times}2$ 블록을 기준으로 계층적인 구조를 제안한다. 제안하는 알고리즘은 쿼드트리 기반의 타입 코드로 영상을 구조를 나타내고, 대표 값과 잔여 값으로 각 노드의 값을 표현한다. 결과에서 제안하는 알고리즘이 HM1.0보다 13.6% 압축 향상을 보여준다.

HM-Net을 이용한 한국어 유사음소 단위의 재 정의와 평가 (Definition and Evaluation of Korean Phone-Like Units using Hidden Markov Network)

  • 임영춘;오세진;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.183-186
    • /
    • 2002
  • 최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.

  • PDF

HEVC 고속 부호화를 위한 PU 탐색 조기 종료 기법 (An Early Termination Algorithm of Prediction Unit (PU) Search for Fast HEVC Encoding)

  • 김재욱;김동현;김재곤
    • 방송공학회논문지
    • /
    • 제19권5호
    • /
    • pp.627-630
    • /
    • 2014
  • 최신 비디오 부호화 표준인 HEVC(High Efficiency Video Coding)에서는 재귀적으로 동일한 4개의 블록으로 분할될 수 있는 쿼드 트리 기반의 부호화단위(CU: Coding Unit) 구조를 적용하여 높은 부호화 효율을 얻는다. 각 깊이(depth) 레벨에서 각 CU는 가변 크기의 예측단위(PU: Prediction Unit)로 분할된다. 하지만 각 부호화트리단위(CTU: Coding Tree Unit) 마다 최적의 CU 분할구조와 각 CU 마다 최적의 PU 모드를 결정하기 위한 상당한 계산 복잡도 증가를 야기한다. 본 논문에서는 이러한 계산 복잡도를 줄이기 위하여 PU 탐색을 조기 종료하는 고속 PU 결정 기법을 제시한다. 제한 기법은 상위 깊이 CU의 최적 모드와 부호화 율-왜곡 비용을 이용해서 현재 깊이 CU에서의 특정 모드의 율-왜곡 비용 계산을 생략함으로써 PU 탐색을 조기 종료한다. 실험결과 제안기법은 HM 12.0 대비 0.2%의 비트 증가에 18.1%의 계산시간 감소 효과를 얻을 수 있음을 확인하였다.