본 논문은 그레이 영상을 컬러영상으로 변환하고 컬러농도를 변환하여 출력영상을 향상시킨 연구이다. RGB 컬러성분을 추출하기 위한 의사컬러링은 2D고속웨이브릿 변환(FWT)에 의한 필터뱅크 재배열을 적용하고 후처리에서 각각의 모노컬러는 노이즈제거와 영상향상을 위해 이산 컬러농도변환(CIT)을 적용한다. 실험결과 출력영상은 일반 웨이블릿 변환 적용보다 PSNR 30dB이상 개선된다.
최근 인터넷 사용자의 기하급수적 증가에 따라 저렴한 가격의 고성능 대용량 클러스터 웹 서버 시스템에 관심이 증대되고 있다. 클러스터 웹 서버 시스템은 저렴한 비용. 높은 확장성과 가용성 등의 장점과 더불어 대규모 사용자에 대한 성능의 극대화를 목적으로 연구 개발되고 있으며, 최근에는 성능 향상을 위한 내용 기반의 부하 분산 기법에 관심이 모아지고 있다. 본 논문에서는 이러한 클러스터 웹 서버 상에서 사용자의 접근 빈도와 파일의 크기를 고려하여 각 서버 노드에 부하를 균등하게 할당하는 새로운 내용 기반의 부하 분산 기법을 제안한다. 제안된 기법은 웹 서버 로그의 각 URL 항목에 해시 함수를 적용하여 얻어지는 해시 값에 그 빈도와 전송된 파일의 크기를 고려한 누적 히스토그램을 생성한다. 사용자 요청은 (해시 값-서버 노드) 매핑에 의한 히스토그램 변환 과정을 통하여 각 서버 노드에 균등하게 할당된다. 제안된 기법은 누적 히스토그램을 주기적으로 갱신함으로써 동적으로 클러스터 웹 서버 시스템의 부하를 고르게 분산시킬 수 있으며, 또한 서버 노드의 캐시를 활용함으로써 전체 클러스터 시스템의 성능을 향상시킬 수 있다. 시뮬레이션을 통한 성능 분석에서 제안된 기법은 전통적인 라운드 로빈 방법보다는 월등히 우수함을 보이고, 기존의 내용 기반 WARD 방법보다는 약 $10\%$ 정도의 우수한 성능을 나타낸다.
영상의 화질을 개선하기 위한 많은 방법 중 비교적 간단하게 사용되는 방법 중 하나는 영상의 대비를 조절하는 것이다. 이러한 대비를 조절하는 방법 중 하나인 히스토그램 균등화는 영상 계조도 값의 분포를 균등 분포로 변환함으로써 화질을 개선한다. 그러나, 기존의 방법은 영상의 히스토그램 분포가 몇개의 계조도 값에 군집화되어 있다면 영상의 계조도가 과도하게 변하는 단점을 갖는다. 본 논문은 그레이스케일 영상에 대해 히스토그램의 형태를 고려해서 가우시안 함수에 기반한 히스토그램 매칭 방법을 제안한다. 제안된 방법은 영상이 과도하게 밝아지는 것을 제한하고 히스토그램의 분포가 몇 개의 계조도에 군집화되어 있는 영상에서의 에지 및 어두운 부분의 자세한 정보를 표현하는데 우수한 성능을 나타내었다.
Histogram equalization is extensively used for image contrast enhancement in various applications due to its effectiveness and its modest functions. In image research, image enhancement is one of the most significant and arduous technique. The image enhancement aim is to improve the visual appearance of an image. Different kinds of images such as satellite images, medical images, aerial images are affected from noise and poor contrast. So it is important to remove the noise and improve the contrast of the image. Therefore, for this purpose, we apply a median filter on MR image as the median filter remove the noise and preserve the edges effectively. After applying median filter on MR image we have used intensity transformation function on the filtered image to increase the contrast of the image. Than applied the histogram equalization (HE) technique on the filtered image. The simple histogram equalization technique over enhances the brightness of the image due to which the important information can be lost. Therefore, adaptive histogram equalization (AHE) and contrast limited histogram equalization (CLAHE) techniques are used to enhance the image without losing any information.
영상 처리의 목표는 관찰자를 위하여 영상의 시각적인 측면을 개선하는 것이다. 히스토그램은 디지털 영상 처리의 기초 자료로 사용될 수 있는 중요한 도구이다. 그러므로 히스토그램을 효과적으로 관리하는 것은 디지털 영상 처리에 있어 매우 중요하다. 현재 머신 비전 검사 시스템은 여러 외관 검사 분야에서 사용되어지고 있다. 하지만 머신 비전 시스템에 의한 외관 검사 결과는 작업장의 조명에 의한 영향을 많이 받는다. 본 논문에서는 이러한 영향을 극복하기 위한 방법으로 히스토그램 변환을 이용해서 머신 비전 검사의 정확성을 향상시키는 방법을 제안하였다. 제안하는 방법은 영상 내에서 개선이 필요한 영역에 대한 히스토그램 변환을 수행함으로써, 이들 영역의 특징들을 향상시키는 효과를 거둘 수 있다. 본 논문에서 제안된 방법은 지그 플레이트의 외관 검사를 통해 검증하였다.
It is well known that when there is an acoustic mismatch between the speech obtained during training and testing, the accuracy of speaker verification systems drastically deteriorates. This paper presents the use of MFCCs' histogram enhancement technique in order to improve the robustness of a speaker verification system. The technique transforms the features extracted from speech within an utterance such that their statistics conform to reference distributions. The reference distributions proposed in this paper are uniform distribution and beta distribution. The transformation modifies the contrast of MFCCs' histogram so that the performance of a speaker verification system is improved both in the clean training and testing environment and in the clean training and noisy testing environment.
Crosswalk detection is an important part of the Pedestrian Protection System in autonomous vehicles. Different methods of crosswalk detection have been introduced so far using crosswalk edge features, the distance between crosswalk blocks, laser scanning, Hough Transformation, and Fourier Transformation. However, most of these methods failed to detect crosswalks accurately, when they are damaged, faded away or partly occluded. Furthermore, these methods face difficulties when applying on real road environment where there are lot of vehicles. In this paper, we solve this problem by first using a region based binarization technique and x-axis histogram to detect the candidate crosswalk areas. Then, we apply Support Vector Machine (SVM) based classification method to decide whether the candidate areas contain a crosswalk or not. Experiment results prove that our method can detect crosswalks in different environment conditions with higher recognition rate even they are faded away or partly occluded.
본 논문은 히스토그램 시퀀스(histogram sequence)에 저차원 변환을 적용할 때, 어떤 공간 채움 곡선(space filling curve: SFC)의 성능이 가장 좋은지를 판단하는 체계적인 평가방법을 제안한다. 히스토그램 시퀀스는 이미지를 주어진 SFC에 따라 시계열 형태로 표현한 것을 말한다. 히스토그램 시퀀스는 매우 고차원이므로 저장 및 검색이 매우 어렵다. 효율적인 저장 및 검색을 위해서 시계열 저차원 변환의 하한을 사용할 수 있는데, 이 하한의 성능은 SFC의 종류에 따라 큰 영향을 받게 된다. 본 논문에서는 히스토그램 시퀀스를 저차원 변환할 때 어떤 SFC의 성능이 좋은지를 평가하기 위해, "히스토그램 시퀀스에서 엔트리들이 인접하면 이미지에서도 해당 셀들이 인접해야 한다"는 공간지역성(spatial locality)의 개념을 제안한다. 다음으로, 공간 지역성을 정량적으로 평가할 수 있는 공간 지역성 보존 척도(spatial locality preservation metric)를 제안하고, 이를 계산하기 위한 정형적인 방법을 제시한다. 본 논문에서는 공간 지역성 보존 척도 측면에서 총 다섯 가지의 SFC를 평가하고, 이 평가 결과가 실제 이미지 매칭의 저차원 변환 성능 평가와 유사함을 확인한다. 또한, 저차원 변환 기반의 k-NN(k-nearest neighbors) 검색을 실험하여, 공간 지역성 보존 척도가 가장 낮은 힐버트-오더가 k-NN 검색에서도 가장 좋은 성능을 보임을 통해, 제안한 공간 지역성 보존 척도의 유용성을 입증한다.
Machine vision inspection systems have replaced human inspectors in defect inspection fields for several decades. However, the inspection results of machine vision are often affected by small changes of illumination. When small changes of illumination appear in image histograms, the influence of illumination can be decreased by transformation of the histogram. In this paper, we propose an enhanced histogram matching algorithm which corrects distorted histograms by variations of illumination. We use the resolution resizing method for an optimal matching of input and reference histograms and reduction of quantization errors from the digitizing process. The proposed algorithm aims not only for improvement of the accuracy of defect detection, but also robustness against variations of illumination in machine vision inspection. The experimental results show that the proposed method maintains uniform inspection error rates under dramatic illumination changes whereas the conventional inspection method reveals inconsistent inspection results in the same illumination conditions.
본 논문에서는 대칭 로지스틱 함수에 기반을 둔 히스토그램 평활화를 이용한 영상의 화질개선을 제안하였다. 여기서 히스토그램 평활화는 영상의 명암도를 조정하여 화질을 개선하는 간단하고 효과적인 공간영역 기반 처리기법이다. 또한 대칭 로지스틱 함수는 s-자 형의 비선형 변환함수로 영상의 명암도 발생빈도수에 따라 밝기개선 정도를 비선형적으로 조정하기 위함이다. 특히 영상의 히스토그램에서 최대 발생빈도수를 가지는 명암도와 전체 픽셀수만을 이용한 유연한 대칭의 로지스틱 함수를 제안함으로써, 기존 로지스틱 함수에서의 지수함수 계산 부담을 감소시켰다. 제안된 평활화 기법을 크기와 히스토그램 분포가 다른 5개의 영상을 대상으로 실험한 결과, 원 영상이나 기존의 전역 히스토그램 평활화의 결과영상보다 우수한 화질개선 성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.