• Title/Summary/Keyword: histochemical localization

Search Result 14, Processing Time 0.018 seconds

Characteristics of alkaline and acid phosphatase in Spirometra erinacei (만손열두조충(Spirometra erinacei)에서 알칼리성과 산성 인산효소의 특성)

  • 곽기훈;김창환
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • This study was done to investigate the enzyme-histochemical localization and characteristics of alkaline and acid phosphatase related with metabolism in sparganum and adult of Spirometrn erinacei. By the enzyme-histochemical assay, the alkaline and acid phosphatases were localized in the tegument and subtegumental musculature of sparganum and adult, but not in the parenchyma. The activities of alkaline phosphatase were stronger in the tegument than in the subtegumental musculature, and activities of acid phosphatase were stronger in the tegument of adults than those of sparganum. The 2 isozymes of alkaline and acid phosphatases were separated from s-sparganum (from snake) and r-sparganum (from experimentaly infected rats) respectively but 4 isozymes of Alp and 3 isoxymes of Acp were separated from adult worms by electrophoresis. In isogyme Alp, the 661)a was the common isozyme, but 130 kDa isozyme of Acp was the common isozyme in spargana and adult worms. By isoelectrofocusing, 4 isozymes (PI 7.9, 7.7, 6.5 and 6.3) and 2 isozymes (PI 7.9 and 7.7) of alkaline phosphatase were separated from adults and spargana respectively. In the stability against heat, activity of alkaline phosphatase was denatured perfectly after heating at 90℃ for 40 seconds. The optimum pH and temperature for activity of alkaline phosphatase were about pH 10 and 50℃, respectively. The maximum activity (unit) of alkaline phosphatase was 22.0 in s- sparganum,25.0 in r-sparganum and 215.0 in adult worms, so that the maximum activity was revealed higher in adults than spargana. As the result from above, we observed that alkaline and acid phosphatases were functioned mainly in the tegument and subtegumental musculature , and the isoxymes of phosphatase were activated differently according to habitat of the parasites. The spargana and adult worms carry out the pafasitism by adapting thenlselves to parasitic circumstance loth these emxymes.

  • PDF

Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers (신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jum-Young;Lee, Sang-Ryoung;Lee, Chang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF

Immunohistochemical localization of several protein changes in periodontal ligament during tooth eruption and interdental separation of rats (흰쥐의 치아 맹출과 치간 이개 과정에서 수종의 치주인대 단백질 발현의 변화에 관한 면역 조직화학적 연구)

  • Lim, Sung-Hoon;Park, Hyung-Soo;Yoon, Young-Jooh;Kim, Kwang-Won;Kim, Heung-Joong;Jeong, Moon-Jin;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.71-81
    • /
    • 2004
  • In this study, we attempt to investigate the mechanisms by which PDL cells regulate osteoclast formation and also tc know whether PDL retained their characteristic phenotype during tooth eruption and interdental separation. Rats were prepared at developmental days 21 (pre-root formation), 27(toot development), 34(advanced root formation/eruption) and at later times(adult rats). To induce severe resorption state of alveolar bone and tooth root, interdental separation with brass wire was performed between the lower first and second molars for 2 weeks in adult rats. Rat mandibles were demineralized and embedded in paraffin, and horizontal and frontal section were prepared for immuno-histochemical analysis using PDL-specific protein 22 (PDLs22), receptor activator of NFKB ligand (RANKL) and osteoprotegerin (OPG) antibodies. 1. Root formation and eruption stage of tooth development. 1) PDLs22 immunolocalization was observed in tooth follicle/PDL cells and osteoblasts throught out the root formation and eruption stages of tooth development. 2) RANKL expression became stronger at eruption stage than root formation stage of tooth development. 3) Strong expression of OPG was detected in follice/PDL cells of toot formation stage but it was decreased with tooth eruption. 2. Interdental separation between lower first and second molar 1) Comparared to normal animal, multinucleated osteoclasts and odontoclasts were markedly induced in the alveolar bone and tooth root with PDL remodeling in hematoxylin-eosin section. 2) PDLs22 expression was decreased with interdental separation. 3) RANKL expression was Increased with interdental separation in PDL fibroblasts, osteoblasts, odontoclasts and it lacunae, resorting dentin, cementum and bone matrix. 4) OPG expression was slightly decreased in the PDL cells adjacent to the alveolar bone and root surface with interdental separation. These results suggested that during tooth eruption and tooth movement, RANKL and OPG in the periodontal tissues are important determinants regulating balanced alveolar bone and tooth root resorption. And it is also suggested that PDL cells retained their characteristic phenotype during tooth eruption and interdental separation except for the short period of PDL remodeling.

Localization of Sensory Neurons Innervating the Rat Intestine Using the Cholera Toxin B Subunit(CTB) and Wheat Germ Agglutinin-Horseradish Peroxidase(WGA-HRP) (표지방식을 이용한 흰 쥐 복강 내장을 지배하는 감각신경세포체와 신경섬유의 표지부위)

  • Lee, Dong-Hyup;Lee, Chang-Hyun;Lee, Moo-Sam
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.75-96
    • /
    • 1998
  • The local arrangement of sensory nerve cell bodies and nerve fibers in the brain stem, spinal ganglia and nodose ganglia were observed following injection of cholera toxin B subunit(CTB) and wheat germ agglutinin-horseradish peroxidase(WGA-HRP) into the rat intestine. The tracers were injected in the stomach(anterior and posterior portion), duodenum, jejunum, ileum, cecum, ascending colon or descending colon. After survival times of 48-96 hours, the rats were perfused and their brain, spinal and nodose ganglia were frozen sectioned ($40{\mu}m$). These sectiones were stained by CTB immunohistochemical and HRP histochemical staining methods and observed by dark and light microscopy. The results were as follows: 1. WGA-HRP labeled afferent terminal fields in the brain stem were seen in the stomach and cecum, and CTB labeled afferent terminal fields in the brain stem were seen in all parts of the intestine. 2. Afferent terminal fields innervating the intestine were heavily labeled bilaterally gelalinous part of nucleus of tractus solitarius(gelNTS), dorsomedial part of gelNTS, commissural part of NTS(comNTS), medial part of NTS(medNTS), wall of the fourth ventricle, ventral border of area postrema and comNTS in midline dorsal to the central canal. 3. WGA-HRP labeled sensory neurons were observed bilaterally within the spinal ganglia, and labeled sensory neurons innervating the stomach were observed in spinal ganglia $T_2-L_1$ and the most numerous in spinal ganglia $T_{8-9}$. 4. Labeled sensory neurons innervating the duodenum were observed in spinal ganglia $T_6-L_2$ and labeled cell number were fewer than the other parts of the intestines. 5. Labeled sensory neurons innervating the jejunum were observed in spinal ganglia $T_6-L_2$ and the most numerous area in the spinal ganglia were $T_{12}$ in left and $T_{13}$ in right. 6. Labeled sensory neurons innervating the ileum were observed in spinal ganglia $T_6-L_2$ and the most numerous area in the spinal ganglia were $T_{11}$ in left and $L_1$ in right. 7. Labeled sensory neurons innervating the cecum were observed in spinal ganglia $T_7-L_2$ and the most numerous area in the spinal ganglia were $T_{11}$ in left and $T_{11-12}$ in right. 8. Labeled sensory neurons innervating the ascending colon were observed in spinal ganglia $T_7-L_2$ in left, and $T_9-L_4$ in right. The most numerous area in the spinal ganglia were $T_9$ in left and $T_{11}$ in right. 9. Labeled sensory neurons innervating the descending colon were observed in spinal ganglia $T_9-L_2$ in left, and $T_6-L_2$ in right. The most numerous area in the spinal ganglia were $T_{13}$ in left and $L_1$ in right. 10. WGA-HRP labeled sensory neurons were observed bilaterally within the nodose ganglia, and the most numerous labeled sensory neurons innervating the abdominal organs were observed in the stomach. 11. The number of labeled sensory neurons within the nodose ganglia innervating small and large intestines were fewer than that of labeled sensory neurons innervating stomach These results indicated that area of sensory neurons innervated all parts of intestines were bilaterally gelatinous part of nucleus tractus solitarius(gelNTS), dorsomedial part of gelNTS, commissural part of NTS (comNTS), medial part of NTS, wall of the fourth ventricle, ventral border of area postrema and com NTS in midline dorsal to the central canal within brain stem, spinal ganglia $T_2-L_4$ and nodose ganglia. Labeled sensory neurons innervating the intestines except the stomach were observed in spinal ganglia $T_6-L_4$. The most labeled sensory neurons from the small intestine to large intestine came from middle thoracic spinal ganglia to upper lumbar spinal ganglia.

  • PDF