• Title/Summary/Keyword: hippocampal cells

Search Result 229, Processing Time 0.028 seconds

Improving Effect of Silk Peptides on the Cognitive Function of Rats with Aging Brain Facilitated by D-Galactose

  • Park, Dong-Sun;Lee, Sun-Hee;Choi, Young-Jin;Bae, Dae-Kwon;Yang, Yun-Hui;Yang, Go-Eun;Kim, Tae-Kyun;Yeon, Sung-Ho;Hwang, Seock-Yeon;Joo, Seong-Soo;Kim, Yun-Bae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.224-230
    • /
    • 2011
  • In order to develop silk peptide (SP) preparations possessing cognition-enhancing effect, several candidates were screened through in vitro assays, and their effectiveness was investigated in facilitated brain aging model rats. Incubation of brain acetyl-cholinesterase with SP-PN (1-1,000 ${\mu}g/ml$) led to inhibition of the enzyme activity up to 35%, in contrast to a negligible effect of SP-NN. The expression of choline acetyltransferase (ChAT) mRNA of neural stem cells expressing ChAT gene (F3.ChAT) was increased by 24-hour treatment with 10 and 100 ${\mu}g/ml$ SP-NN (1.35 and 2.20 folds) and SP-PN (2.40 and 1.34 folds). Four-week subcutaneous injections with D-galactose (150 mg/kg) increased activated hippocampal astrocytes to 1.7 folds (a marker of brain injury and aging), decreased acetylcholine concentration in cerebrospinal fluid by 45-50%, and thereby impaired learning and memory function in passive avoidance and water-maze performances. Oral treatment with SP preparations (50 or 300 mg/kg) for 5 weeks from 1 week prior to D-galactose injection exerted recovering activities on acetylcholine depletion and brain injury/aging as well as cognitive deficit induced by D-galactose. The results indicate that SP preparations restore cognitive functions of facilitated brain aging model rats by increasing the release of acetylcholine, in addition to neuroprotective activity.

Ginsenoside Rg1 modulates medial prefrontal cortical firing and suppresses the hippocampo-medial prefrontal cortical long-term potentiation

  • Ghaeminia, Mehdy;Rajkumar, Ramamoorthy;Koh, Hwee-Ling;Dawe, Gavin S.;Tan, Chay Hoon
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.298-303
    • /
    • 2018
  • Background: Panax ginseng is one of the most commonly used medicinal herbs worldwide for a variety of therapeutic properties including neurocognitive effects. Ginsenoside Rg1 is one of the most abundant active chemical constituents of this herb with known neuroprotective, anxiolytic, and cognition improving effects. Methods: We investigated the effects of Rg1 on the medial prefrontal cortex (mPFC), a key brain region involved in cognition, information processing, working memory, and decision making. In this study, the effects of systemic administration of Rg1 (1 mg/kg, 3 mg/kg, or 10 mg/kg) on (1) spontaneous firing of the medial prefrontal cortical neurons and (2) long-term potentiation (LTP) in the hippocampal-medial prefrontal cortical (HP-mPFC) pathway were investigated in male Sprague-Dawley rats. Results: The spontaneous neuronal activity of approximately 50% the recorded pyramidal cells in the mPFC was suppressed by Rg1. In addition, Rg1 attenuated LTP in the HP-mPFC pathway. These effects were not dose-dependent. Conclusion: This report suggests that acute treatment of Rg1 impairs LTP in the HP-mPFC pathway, perhaps by suppressing the firing of a subset of mPFC neurons that may contribute to the neurocognitive effects of Rg1.

Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency

  • Aryal, Bijay;Maskey, Dhiraj;Kim, Myeung-Ju;Yang, Jae-Won;Kim, Hyung-Gun
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2011
  • Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium ($Ca^{2+}$) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains $Ca^{2+}$ homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.

Upregulation of Dendritic Arborization by N-acetyl-D-Glucosamine Kinase Is Not Dependent on Its Kinase Activity

  • Lee, HyunSook;Dutta, Samikshan;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the ${\gamma}$-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The overexpression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim;Wonseok Chang;SangYep Shin;Anjana Silwal Adhikari;Geun Hee Seol;Dae-Yong Song;Sun Seek Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.113-125
    • /
    • 2023
  • It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system (신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법)

  • Lee, Hyun-Sook;Cho, Sun-Jung;Jung, Yong-Wook;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.198-203
    • /
    • 2007
  • DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease

  • Kim, Hyeon-Joong;Shin, Eun-Joo;Lee, Byung-Hwan;Choi, Sun-Hye;Jung, Seok-Won;Cho, Ik-Hyun;Hwang, Sung-Hee;Kim, Joon Yong;Han, Jung-Soo;Chung, ChiHye;Jang, Choon-Gon;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.796-805
    • /
    • 2015
  • Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.

Effects of Salvianolic Acid B Against Oxidative Stress in Skeletal Muscle and Brain Tissue following Exhaustive Exercise in Rats (Salvianolic acid B가 고강도 운동부하에 의한 흰쥐 골격근과 뇌조직의 Oxidative Stress에 미치는 영향)

  • Lee, Hyun-Joon;Kang, Sung-Han;Kweon, Su-Hyeon;Kim, Dae-Kyung;Kim, Jeeho;Moon, Ji-Hong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.99-106
    • /
    • 2016
  • Objectives : Salvianolic acid B (SAB) is an active ingredient in Salvia miltiorrhiza frequently used for cardiovascular and cerebrovascular diseases. The present study investigated the antioxidant effects of SAB on the skeletal muscle and the brain tissue of rats following exhaustive exercise.Methods : The rats were treated with oral administration of SAB (30 mg/kg) daily for 5 days prior to the exhaustive exercise. The exhaustive exercise was performed as swimming for 150 min with 5% body weight attached to the tail on the 5th day. The antioxidant effects of SAB was evaluated by measuring the superoxide generation in the gastrocnemius and the 4-HNE expression in the hippocampal tissue. In addition, c-Fos-expressing cells in the brain tissue was observed using immunohistochemistry.Results : Histological features and muscle fiber type composition were not different between the SAB group and the exhaustive exercise group. SAB significantly reduced the upregulation of superoxide generation in the muscle tissue. SAB significantly reduced the increase of c-Fos-expressing cells in the cerebral cortex, paraventricular thalamic nucleus, dorsomedial hypothalamic nucleus, the CA1, CA3, and DG regions of hippocampus. SAB significantly reduced the upregulation of 4-HNE expression in the CA1 and DG regions of hippocampus caused by the exhaustive exercise.Conclusions : The results suggest that SAB exerts antioxidative effect against oxidative stress in the skeletal muscle and the brain tissue following exhaustive exercise, while SAB may has an anti-stress effect on stress responses in the brain.