• 제목/요약/키워드: higher-order shear deformation beam theories

검색결과 36건 처리시간 0.017초

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

Buckling and stability analysis of sandwich beams subjected to varying axial loads

  • Eltaher, Mohamed A.;Mohamed, Salwa A
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.241-260
    • /
    • 2020
  • This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

A new simple shear and normal deformations theory for functionally graded beams

  • Bourada, Mohamed;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.409-423
    • /
    • 2015
  • In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (${\varepsilon}_Z{\neq}0$) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.381-391
    • /
    • 2023
  • The aim of this work is to analyze and predict the wave propagation behavior of the carbon nanotube reinforced composites (CNTRC) beams within the framework of various higher order shear deformation beam theory. Using the Euler-Lagrange principle, the wave equations for CNTRC beams are derived, where the determining factor is to make the determinant equal to zero. Based on the eigenvalue method, the relationship between wave number and circular frequency is obtained. Furthermore, the phase and group velocities during wave propagation are obtained as a function of wave number, and the material properties of CNTRC beams are estimated by the mixture rule. In this paper, various higher order shear beam theory including Euler beam theory, Timoshenko beam theory and other beam theories are mainly adopted to analyze the wave propagation problem of the CNTRC beams, and by this way, we conduct a comparative analysis to verify the correctness of this paper. The mathematical model provided in this paper is verified numerically by comparing it with some existing results. We further investigate the effects of different enhancement modes of CNTs, volume fraction of CNTs, spring factor and other aspects on the wave propagation behaviors of the CNTRC beams.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.