• Title/Summary/Keyword: higher-order shear and normal deformable theory

Search Result 4, Processing Time 0.017 seconds

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory (개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.