• Title/Summary/Keyword: higher order solution

Search Result 1,048, Processing Time 0.027 seconds

Pharmacoat Coating in an Aqueous System : The Dissolution Behavior and Reduction in Coating Time

  • Sekigawa Fujio;Muto Hiroaki;Araume Kiyoshi
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.51-76
    • /
    • 1990
  • It is sometimes said lately that the pH of the human gastric juice is significantly different among individuals. Thus, the dissolution behavior of coated solid dosage forms should preferably be independent of the pH of the test solution. With these points as a background, the effect of pH on the dissolution velocity of coated tablets was studied to compare that of Pharmacoat with other gastric soluble film coating materials. Three viscosity types of Pharmacoat have been available(3, 6 and 15cP) until now. the 6cP type has been considered to be the most suitable for a tablet coating amongst the three types. The 3 cP type with a low degree of polymerization, is capable of providing high concentration, but the film strength is so inferior that sometimes cracking of the film may occur. On the other hand, in the case of the 15cP type, high polymer concentration cannot be achieved because of the high dgree of polymerization, and thus it is uneconomical for coating. Now, there is a strong demand to reduce the coating time even when HPMC is used in the 6cP type in order to reduce the coating cost. In order to improve this problem, we have concentrated our attention on reducing the viscosity value of HPMC to an allowable lower limit from 6cP. As a result of this study, it was found that the reduction of the viscosity value to around 4.5cP enabled the use of a higher solution concentration and an incidental shorter coating time without giving any substantial adverse effects on the properties of coated preparations. These experiment results are presented in the later part of this presentation. Based on this study, we have added the viscosity type of 4.5cP as one of the Pharmacoat products as Pharmacoat-645.

  • PDF

Effects of Plant Growth Regulator on Seedling Growth in Onion Seed(Allium cepa L.) (식물 生長調整劑處理가 양파(Allium cepa L.)의 幼苗生長에 미치는 영향)

  • 이성춘
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • This study was conducted to stable direct sowing cultivation with seedling growth promotion by plant growth regulator treatment in onion seed(Allium cepa L.) The emergence percentage of soaked seed in BA, GA$_3$, and kinetin solution were higher than control seed, and those were 93.0, 94.3, 93.8%, respectively. The plant height was significant elongation in growth regulators treated seed, and those effects were high GA$_3$, kinetin and BA in the order, and the extend were high as increasing the growth regulator solution concentration in GA$_3$ and BA, and that was reverse in kinetin. The No. of leaf was increased in growth regulators treated seed, and the extend were similar among the growth regulators. The No. of root was increased significantly in growth regulators treated seed, and the extend were high in GA$_3$, BA and kinetin in the order.

  • PDF

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

Characteristics of Elements Extraction in Waste Rocks on the Abandoned Jangpoong Cn Mine (장풍 동광산 폐광석 내 원소의 용출 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.695-708
    • /
    • 2008
  • In order to evaluate the geochemical behaviors of elements with waste rocks in the abandoned Jangpoong Cu mine area, total concentration analysis and leaching experiments were performed. The content of elements within waste rocks compared with background values decreased in order of As>>Cu>Pb>Cd>Co. Leaching experiments were carried out at various extraction environments, considering the acid rain ($0.00001{\sim}0.001N\;HNO_3$) and the acid mine drainage ($0.001{\sim}0.1N$ HNO3). After 24 hours of reaction with different acidic solution, the leaching characteristics of waste rocks were classified into three types according to final pH of leaching solution. Type I refers to the case that the final pH of leaching solution was lower than that of the reaction solution due to the dissolution of acidic minerals from rocks, while type 2 and 3 refer to the case that the final pH maintained higher than that of the reaction solution. Theses types include in acid buffering minerals such as clay minerals and carbonate minerals. The leaching characteristics of the elements after the reaction could be categorized into As-Co-Fe, Cu-Mn-Cd-Zn, and Pb. As-Co-Fe started to get leached under 2.5 of pH regardless of changes in the final pH, and Cu-Mn-Cd-Zn showed different initial leaching pH according to the types of final pH changes. Based on the pH value where leaching started regardless of leaching concentration, the relative mobility of each element was in the order of Mn Zn>Cd>Cu>>Fe Co>As>Pb. Thus, more higher mobility elements(Zn, Mn and Cu) were leached by reacting with acid rain water. Acid mine drainage may result in distributions of elements having relatively less mobility(As, Fe, Co and Pb).

Studies on the Removal of Phytate from Korean Perilla (Perilla ocimoides, L.) Protein (들깨종실단백질 중의 phytate 제거에 관한 연구)

  • Park, Jin-Hee;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.343-349
    • /
    • 1990
  • The solubility of protein and phytate was measured at various pH's in distilled water and at various concentrations of NaCl, $CaCl_2\;and\;Na_2SO_3$ solutions, and then optimum condition for producing low phytate protein isolate from perilla flour was investigated. The protein solubility in water showed minimum at pH 4.0 and increased at pH higher or lower than 4.0, while phytate solubility was highest at pH 5.0 and decreased at pH higher or lower than 5.0. In NaCl solution, protein solubility was lowest between pH 3.0-4.0, while phytate solubility was high between pH 2.0-5.0 and abruptly decreased above PH 6.0. In $Na_2SO_3$ solution, protein solubility was lowest between pH 2.0-3.0 and phytate solubility showed maximum values between pH $5.0{\sim}6.0$, and it's solubility was low in 3% salt concentration at all pH ranges. In $CaCl_2$ solution, protein solubility in 3% salt concentration was relatively low at all pH ranges, and phytate solubility showed highest values between pH $2.0{\sim}3.0$ and abruptly decreased (1.0%) above pH 4.0. In order to make low phytate protein isolate, defatted perilla flour protein was extracted at pH9.0 and precipitated at pH 4.0 in 3% NaCl solution. The yield of low phytate protein isolate was 61.4% of total protein. This protein was found to contain 0.02% phytate by weight.

  • PDF

Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol (Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron (영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Properties of Bubble According to Types and Concentrations of Concrete Foaming Agent (콘크리트용 기포제 종류 및 농도에 따른 기포의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Oh, Kwang-Chin;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2011
  • Bubbles within the foamed concrete manufactured by pre-foaming method is the main factor which affects the physical properties of foamed concrete such as density, strength, and porosity. Although many researches on foamed concrete have been continuously carried out, insufficient number of researches on the properties related to bubbles in the foamed concrete has been performed except for chemical application related researches. In order to make an optimal foamed concrete, study on the bubble properties must be pursued. In order to effectively implement bubbles in the manufacturing of foamed concrete, the bubble properties must be estimated. In this study, in order to determine the bubble properties, examination of the bubble properties according to types and foaming agent concentration was performed. An foaming agent used for this test were anionic surfactant, rosin, and protein system with the foaming agent concentration range of 0.05~13%. Test parameters considered in the study were foaming rate, foam volume, drainage solution volume, and bubble size. The study results showed that, regardless of foaming agent type, higher concentration of foaming agent showed an increase in the foaming rate. Also, the results showed that concentration of foaming agent affected bubble size, drainage solution volume change, and bubble distributions. With respect to the stability of the bubble, protein foaming agent was better than anion surfactant or rosin foaming agent. With respect to the bubble shape, anion surfactant and rosin formed bubbles had polygon shape where as protein formed bubbles had spherical shape.

Effects of Extracting Conditions on the Properties of Pish Meal Protein Isolates and the Permeability of Protein Film for Ester Compounds (추출조건이 어분단백질 물성과 필름의 ester 화합물 투과율에 미치는 영향)

  • YOU Byeong-Jin;SHIM Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.320-326
    • /
    • 2001
  • To obtain the basic data for preparing edible or biodegradable film, fish meal protein isolates (FMPI) were prepared through alkaline extraction. And FMPI's properties and the ester compounds permeability of FMPI film were measured. FMPI were extracted under various extracting time with 0.2 N NaOH solution at $60^{\circ}C$, Recovery ratios of FMPI extracted from fish meal were increased with extracting time increasing. Surface hydrophobicity of FMPI extracted for 1 hr showed highest value. Emulsifying activity index (EAI) was increased with the increasement of extracting time but its emulsifying stability index (ESI) showed an inverse results. Viscosity of FMPI solution showed the highest value at pH 2 but showed the lowest value at pH 4, The higher concentration of sorbitol as plasticizer showed the higher ethyl acetate permeability of FMPI film, Ethyl acetate permeability of FMPI films according to kind of plasticizers showed different degree and increased in order as follow: polyethylene glycol, glycerol and sorbitol. Ester compounds having the lower molecular weight showed the higher permeability. Increment of temperature increased the ethyl acetate permeability of FMPI film. FMPI haying higher surface hydrophobicity made FMPI film be higher tensile strength. On elongation of FMPI films, kinds of plasticizer were more effective than surface hydrophobicity of FMPI.

  • PDF