• Title/Summary/Keyword: higher order modes

Search Result 220, Processing Time 0.025 seconds

A Technique of Forecasting Market Share of Transportation Modes after Introducing New Lines of Urban Rail Transit with Observed Mode Share Data (관측 교통수단 분담률 자료를 활용한 도시철도 신설 후 수단분담률 예측분석 기법)

  • Seo, Dong-Jeong;Kim, Ik-Ki;Lee, Tae-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • This study suggested a method of forecasting market-share of each mode after introducing new urban rail transit lines. The study reflected the observed market share of presently operating urban rail transit into forecasting process in order to improve accuracy in predicting market share of each modes. For more realistic representation of the forecasting model, we categorized O/D pairs according to attributes of trip distance, access time and number of transfers. The analysis results of traveler's mode choice behavior with observed data showed that the trip distances are longer, the share of urban rail tends to be higher, and that the number of transfers is fewer and the access times are lesser, the share of urban rail also tends to be higher. Then, incremental logit model was used in estimating mode choice probabilities for O/D pairs along with rail transit lines while utilizing observed market shares of each modes and differences in transit service level. As the next step, the market share of rail transit after introducing new rail transit lines was forecasted by using incremental logit model with the intial share values calculated the previous analysis step. It also reflected changes in level of service for automobile in highway due to changes in highway systems and changes in mode shares after introducing new lines of rail transit. It can be expected that the proposed method would more realistically duplicates phenomena of mode choice behavior for rail transit and that it would be more theoretically logical than the typical existing methods using SP data and incremental logit model or using addictive logit model in this country.

Effect of Combination Method on the Four Inbred Lines of Double Cross Hybridization for Crop Population Improvement (작물의 품종 육성을 위한 복교잡 조합 방법과 그 효과)

  • 맹돈재;성병열;황종진;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.532-538
    • /
    • 1990
  • This experiment was carried out to establish the efficiency of crop breeding on comparison of combination methods of single, 3-way, and double crosses and combination order of 4 winter wheat which were different in origin, source, and plant types, On comparison of 4 crossing modes, there appeared the earliest heading and the highest grain yield in double cross, and decreased in 3-way. single crosses. and parents in order, There showed the significant mean squares of GCA and SCA in 4${\times}$4 diallel analysis for grain yield and yield components. Grumil and Bezostaya 1 exhibited highest GCA effect of grain yield which appeared the actual highest grain yield. There appeared the highest SCA-effect in F$_1$ (Eunpamil/Bezostaya 1) showing 4.22. Of the 3 double crosses there exhibited the highest grain yield in F$_1$ (Grumil/Eunpamil/ /Lanota/Bezostaya 1). Two single crosses for this double cross ---F$_1$ (Grumil/Eunpamil) and F$_1$ (Lancota/Bezostaya 1) --- do not revealed directly for this yield, but combined each other by chromosome switch as combination of F$_1$ (Grumil/Lancota), F$_1$(Grumil/Bezostaya 1), F$_1$(Eunpamil/Lancota) and F$_1$(Eunpamil/Bezostaya 1) which appeared the higher grain yields and SCA-effects. Of the six 3-way crosses. F$_1$ (Lancota/Bezostaya 1/ /Eunpamil) expressed the highest grain yield. Its combinations were F$_1$ (Lancota/Eunpamil) and F$_1$ (Bezostaya 1/Eunpamil) combined by chromosome switch, which its grain yield and SCA-effect were higher.

  • PDF

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Prediction of the Transmission Loss of Rectangular Lined Plenum Chamber by the Rayleigh-Ritz Method (Rayleigh-Ritz 방법에 의한 흡음재가 부착된 직방형 소음기의 전달 손실 예측)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.869-872
    • /
    • 2005
  • The purpose of this study is on the prediction of the acoustic performance of the lined rectangular plenum chamber which can be used in the HVAC systems. The lined plenum chamber is modeled as a piston driven rectangular tube without mean flow and the acoustic pressure in the lined chamber is obtained by superposing the three dimensional pressure due to each of uniformly and harmonically fluctuating pistons. The arbitrary locations of inlet/outlet ports as well as the acoustic higher order modes generated at the area discontinuities of the port chamber interfaces are taken into consideration. The four-pole parameters can be derived by imposing the proper boundary conditions on each inlet and outlet ports. The lining material on the internal wall is assumed to be a bulk-reacting model. A single weak variation statement which satisfies the fluctuating rigid piston condition and the pressure and displacement continuity condition at the interface between the lining material and the airway was developed. The set of cosine functions were used as the admissible function when applying the Rayleigh-Ritz method. Computed results are compared with those predicted by using the locally-reacting lining material and experimental results, respectively. There are a good agreement shown between the results by the Rayleigh-Ritz method and the experiment results. The derived transfer matrices can be easily combined with other four-pole parameters of different types of mufflers for the calculation of the whole system performance.

  • PDF

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

Dispersion Analysis for Rectangular Coaxial Line and TEM Cell (네모 동축선과 TEM 셀의 분산관계 해석)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.124-130
    • /
    • 2007
  • A rectangular coaxial line is mainly utilized as a transition structure from a coaxial line to a rectangular waveguide. A TEM cell is also widely used to measure the EMC characteristics of a DUT. In order to understand the operations of a rectangular coaxial line and a TEM cell, it is essential to analyze the dispersion relations of a rectangular coaxial line and a TEM cell. In this paper, we present simple yet accurate dispersion relations of the TE and TM higher modes based on the TEM mode. Manipulating a mode-matching technique and a Green's function approach allows us to obtain the analytic dispersion equations of a rectangular coaxial line and a TEM cell. In our approach, a rectangular coaxial line is divided into four L-blocks and its electromagnetic fields representations are easily obtained with a superposition. To verify the convergence of our dispersion relations, we perform numerical computations and compare our results with those of FDTD.

An Investigation on the Emission Characteristics of Heavy-duty Vehicles using CNG and Diesel Fuel According to the Various Driving Cycles (다양한 주행모드에 따른 천연가스(CNG) 및 경유 사용 대형자동차의 배출가스 특성에 관한 연구)

  • Kim, Hyungjun;Eom, Myungdo;Kim, Jeongsoo
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.634-639
    • /
    • 2012
  • The contribution levels of emissions from the heavy-duty vehicles have been continuously increased. Among the exhaust emissions, NOx (nitric oxides) have a ratio of 73.2% and particle matters have a proportion of 61.8% in the heavy-duty vehicles. Also, natural gas vehicles have the 78.9% of total registered local buses in Korea. Therefore, the investigation on emission characteristics of heavy-duty vehicles using CNG and diesel fuel according to the various driving cycles was carried out in this study. In order to analyze the emission characteristics, the five kinds of buses by using CNG and diesel fuels with a after-treatment devices (DPF, p-DPF) was used and five test driving schedules were applied for analysis of emission characteristics in a chassis dynamometer. To analyze the exhaust emission, the exhaust emission and PM analyzers were used. From this study, it is revealed that diesel buses with after-treatment had reduced emission of CO, HC, PM but NOx. Also, NMHC emission of CNG bus have a higher level and NOx level was similar with diesel buses. In addition, emissions in NIER06 with slow average speed shows lowest levels compared to other test modes.

Intelligent Tuning Of a PID Controller Using Immune Algorithm (면역 알고리즘을 이용한 PID 제어기의 지능 튜닝)

  • Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.8-17
    • /
    • 2002
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems with a less flexible result to the external behavior. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. In addition to that, tuning performance cannot be guaranteed with regards to a plant with non-linear characteristics or many kinds of disturbances. Along with these, this paper used immune algorithm in order that a PID controller can be more adaptable controlled against the external condition, including moise or disturbance of plant. Parameters P, I, D encoded in antibody randomly are allocated during selection processes to obtain an optimal gain required for plant. The result of study shows the artificial immune can effectively be used to tune, since it can more fit modes or parameters of the PID controller than that of the conventional tuning methods.

부유식 천연액화가스(LNG) 터미널의 설계 기술 개발

  • Han Yong-Seop;Lee Jeong-Han;Kim Yong-Su
    • THE INDUSTRY AND TECHNOLOGY OF GAS
    • /
    • v.5 no.1 s.6
    • /
    • pp.39-47
    • /
    • 2002
  • With the expansion of natural gas demands in many countries, the necessity of LNG receiving terminals has been increased. The offshore LNG Floating Storage and Regasification Unit (FSRU) attracts attentions not only for a land based LNG receiving terminal alternative, but also for a feasible and economic solution. Nowadays, as the reliability of offshore oil and gas floating facilities and LNG carriers gains with proven worldwide operations, the FSRU can achieve a safety level that can be comparable to an onshore terminal. The design development related with safety features of the FSRU has been extensively carried out by oil and gas companies, shipyards, engineering companies, and equipment vendors, and has been successful so far in many fields. The construction of the FSRU can be achieved by integrating various technologies and experiences from many disciplines and many participating companies and vendors. In this paper, reviews on some of the important design features and design improvements on FSRU together with the practical construction aspects in cargo containment, vaporization system, ESD system, and operation modes, have been covered in comparison with actual LNG carrier, onshore receiving terminal, and FPSO systems. In order to materialize an FSRU project, the technical and economic justification has to be preceded. It is believed that once the safety and technical soundness is convinced, the FSRU can bring a higher project feasibility by reducing the overall construction time and cost. Through this study, an FSRU design readily applicable to an actual project has been developed by incorporating experiences gained from many marine and offshore projects. The wide use of proven standard technologies adopted in the series construction of LNG carriers and offshore FPSOs will bring the project efficiency and reliability.

  • PDF

Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip

  • Zhou, Wangbao;Jiang, Lizhong;Huang, Zhi;Li, Shujin
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1023-1042
    • /
    • 2016
  • Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.