• Title/Summary/Keyword: higher heating value

Search Result 343, Processing Time 0.025 seconds

Efficiency Analysis of Compact Type Steam Reformer (컴팩트형 수증기 개질장치 효율분석)

  • Oh, Young-Sam;Song, Taek-Yong;Baek, Young-Soon;Choi, Lee-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.304-312
    • /
    • 2002
  • In this study, the performance of the $5Nm^3/hr$ compact type steam reformer which was developed for application of fuel cell or hydrogen station was evaluated in terms of gas process efficiency. For these purposes, reforming efficiency and total efficiency with system load change were analyzed. The reforming efficiency was calculated from the total molar flow of hydrogen output over total fuel flow input to the reformer and the burner on the higher heating value(HHV). In the case of the total efficiency, recovered heat at the heat recovery exchanger was considered. From the results, it was known that system performance was stable, because methane conversion showed the a slight decline which is about 2% though increasing system load to full. Reforming efficiency was increased from 20% to 58%, respectively as increasing system load from 10% to 90%. It was found that total efficiency was higher then reforming efficiency because of terms of heat recovered. As a results, it was known that total efficiency was increased form 75% to 83% at the 10% and 90% system load, respectively. From these results, it is concluded that compact steam reformer which is composed of stacking plate-type reactors is suitable to on-site hydrogen generator or to fuel cell application because of quick start within 1 hr and good performance.

A Study on Biodiesel Fuel of Engine Performance and Emission Characteristics in Diesel Engine (디젤엔진 성능에 미치는 바이오디젤 연료에 관한 연구)

  • Chen, Lei;Cheng, Yukun;Kim, Jaeduk;Song, Kyukeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.59-65
    • /
    • 2014
  • Diesel engines have the superior combustion efficiency and fuel economy that they are widely used for industry, heavyduty vehicles, etc. However, its exhaust emissions have become the major concerns due to their environmental impacts. Moreover, the depletion of fossil fuels is the main issue. Therefore, it is important to look for alternative sources of energy. Bio-diesel is one of the ideal energy which has proved to be ecofriendly for more than fossil fuels. The experimental tests analysed the engine performance and emission characteristics of a diesel engine using diesel and biodiesel blended of BD25, BD45 and BD65, in order to study the use of clean fuel to meet the increasingly stringent emission regulations. The engine performance was examined by using engine dynamometer while an exhaust gas analyzer was used to examine the emission characteristics. The effect of biodiesel on engine performance were lower to diesel through comparing their HP and torque but fuel consumption was slightly increased because of biodiesel has lower heating value and higher density than diesel. However, due to the better lubricity, the brake thermal efficiency of biodiesel was higher than diesel. The emission characteristics were strongly affected by the blending ratio of diesel and biodiesel. The results showed that the smoke opacity, hydrocarbons (HC) and carbon monoxide (CO) emissions decreased while the nitrogen oxides (NOX) slightly increased.

The Study of combustion characteristic and kinetic study of wastes and RDF (폐기물 및 RDF에 대한 연소특성 및 반응속도에 관한 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, thermal weight loss, non-isothermally experiment, chemical composition analysis, calorific value, activation energy (E) were investigated to analysis the kinetic study of RDF, wood pellets, waste wood, waste textile and waste vinyl. When the chemical composition of solidification fuel was compared, the moisture content of RDF was less than the wood pellet and when the kinetic study was compared, the combustion reaction rate of the waste vinyl was higher than any other solidification fuels. However when the combustion efficiency was compared by the activation energy, the RDF had the higher efficiency than other wastes. RDF can be found that the reaction takes place between $320{\sim}720^{\circ}C$ depending on the heating rate.

A Numerical Analysis on Combustion Characteristics of the Gasoline Engine using Methanol Reformulated Fuels under WOT Condition (전부하 운전조건에서 메탄올 개질연료를 사용한 가솔린 엔진의 연소특성에 대한 수치해석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • This research is to decide the possibility of using RM50(reformulated methanol fuel) without any modification of engine by the method of numerical analysis. Comparing the heat release rate, the difference among each fuel was decreased according to the increase of the engine speed, and the maximum heat release rate was higher in the order of RM50 and gasoline fuel. Also, this order corresponds to the order of burning speed. RM50 had the higher turbulent burning speed, and the curve of turbulent intensity was showed similar tendency to the curve of turbulent burning speed. RM50 had relatively high burning speed, short quenching length, high temperature in cylinder, so that it might increase NO emission, but owing to chemical reaction dynamics, it was decreased NO emission. Therefore, in order to predict the possibility of using RM50, it is needed to consider not only the temperature in cylinder by low heating value, but also combustion characteristics including burning speed.

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace (DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;Lim, Ho;Yu, Da-Yeon;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.675-681
    • /
    • 2012
  • The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

Synergistic Effect of Tocopherol, Citric Acid and Sodium Polyphosphate on the Thermal Oxidation of Blending Oil (혼합유(混合油)의 열산화(熱酸化)에 대(對)한 Tocopherol, 구연산 및 인산염(燐酸鹽)의 상승효과)

  • Chang, Hun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.63-70
    • /
    • 1990
  • Influence of mixing ratio of blending oil (rice bran oil : RBD palm olein = 1 : 1, 1 : 4 mixture: w/w) and natural tocopherol, citric acid, and sodium polyphosphate on enhancement of oxidation stability of blending oil under the condition of tap water infulx(1 ml/min/200g oil) were compared by AOM test after heating these system at l80$^{\circ}C$. In addition, the effects of tocopherol, and synergist on oxidition stability were also tested with potato chips fried with blending oil(1 : 4 mixture). The result obtained were as followes; 1. The test of RBD palm olein addition of 50% and 80% against rice bran oil on oxidation stability showed that the higher the palm olein contents in blending oil, the higher the oxidation stability. 2. The test of oxidation stability, adding l00ppm, 200ppm and 400ppm of natural tocopherol in two different types of blending oils, A(1 : 1 mixture) and B(1 : 4 mixture), disclosed that blending oil B was more positively effective, and this trend was superior at 200ppm level particularly, Furthermore, oxidation stability was enhanced remarkably upon addition of 100ppm of natural tocopherol, and 50ppm of citric acid together with 50ppm, 100ppm and 200ppm of sodium polyphosphate in general. Especially, 200ppm of sodium polyphosphate addition induced the most synergetic effect on oxidation stability showing as much as 3 times compare to control. 3. The results of oxidation stability obtained by peroxide value on potato chips fried with blending oil (1:4 mixture} added tocopherol, citric acid and sodium polyphosphate and preserved at $60^{\circ}C$ revealed that addition of tocopherol and 50ppm of citric acid together with 200ppm of sodium polyphosphate treatment was the most synergistic coinciding with AOM test results.

Conversion of Wood Waste into Solid Biofuel Using Catalytic HTC Process (촉매 열수탄화(Hydrothermal carbonization)공정을 이용한 폐목재의 고형연료 제조 및 특성 연구)

  • Joo, Bokyoung;Yeon, Hyejin;Lee, Sangil;Ahn, Soojeung;Lee, Kyeongjae;Jang, Eunsuk;Won, JongChoul
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The objective of this work is to produce solid biofuel from sawdust using the HTC (Hydrothermal carbonization) process. The HTC process of feedstock involves the raw material coming into contact with high temperature and pressurized water. The HTC process could produce gaseous, liquefied and solid products, but this study focused on solid product only as an alternative to coal. In this study, sawdust used for a feedstock and its moisture content was under 5%. Water was added with the feedstock to raise moisture content to 80% and also used catalysts. The HTC process was performed at temperature range from 200 to $270^{\circ}C$ and reaction time was 15 to 120 min. Rising temperature resulted in increasing the higher heating value (HHV) of HTC product. In case of adding catalyst, HHV of solid biofuel was higher and reaction occurred at lower temperature and pressure. Also, HTC solid product had been characterized and found to be hydrophobic, increased HHV (over 40%), and pelletized easily compared to raw material.

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

Easy production techniques for clear pear juice and its antioxidant activities of 'Chuwhangbae' pear (추황배 청징배즙의 제조 및 항산화 활성)

  • Choi, Jin-Ho;Yim, Sun-Hee;Choi, Jang-Jeon;Kim, Sung-Jong;Nam, Seung-Hee;Kang, Sam Seok;Kim, Yoon Kyeong;Lee, Han Chan
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.720-726
    • /
    • 2013
  • This study was carried out to optimize the filtration, clarification, anti-browning processing conditions of clear pear juice and to investigate changes in antioxidant activity of pear juice produced through different heating treatment. For the filtration with cheese cloth, filter paper, or centrifugation (10 min at 3,000 rpm), the pear juice was most efficiently filtered with centrifugation because it showed the highest lightness (L value) and lowest yellowness (a value). Among various clarifying agents, 1% of gelatin or bentonite clarified effectively pear juice but tannin or egg albumin did not. Among anti-browning agents (0.1%) like L-ascorbic acid, NaCl or citric acid, L-ascorbic acid prevented the browning of pear juice with the lowest browning index value (2.62), compared to that of NaCl (2.74), or citric acid (2.87). Fructose, sucrose, glucose and sorbitol were present in the pear juice, the fructose and glucose contents increased but that of sucrose decreased in the heated pear juice. The total polyphenol content of the heated pear juice significantly increase, and did the total flavonoid contents in the clear and heated pear juice. The DPPH radical scavenging activity and nitrate scavenging activity were higher in the clear and heated pear juice than in the fruit crush.

Winter Indoor Thermal Environment Status of Nursery Rooms in Workplace Daycare Centers in Jeju Island (제주지역 직장어린이집 보육실의 겨울철 실내온열환경 실태)

  • Kim, Bong-Ae;Ko, Youn-Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.81-90
    • /
    • 2017
  • This study was conducted to investigate the thermal environment status of nursery rooms in workplace daycare centers in Jeju and propose measures to improve their indoor physical thermal environment. For this purpose, measurements were performed in the winter indoor physical environment of 51 nursery rooms in 11 workplace daycare centers and a psychological evaluation survey on the thermal environment of nursery rooms was conducted for 70 nursery teachers. The investigation was carried out over 11 days in January 2017. The results are as follow. The average indoor temperature of the nursery rooms was $21.3^{\circ}C$($18.7-23.8^{\circ}C$) and the indoor temperatures of 47 nursery rooms (92.9%) were higher than the environmental hygiene management standard for domestic school facilities ($18-20^{\circ}C$). The average relative humidity was 33.9% (16.4-56.0%), and 37 nursery rooms (86.3%) showed a lower average relative humidity than the standard (40-70%). The average absolute humidity was $9.1g/m^3$ ($4.7-13.6g/m^3$), which was lower than the standard for preventing influenza ($10g/m^3$). When the indoor temperature and humidity of the nursery rooms were compared with international standards, it was found that 85% or more of the 51 nursery rooms maintained appropriate indoor temperatures, but 40-50% of the nursery rooms maintained a low humidity condition. Therefore, they need to pay attention to maintaining the appropriate humidity of the nursery room to keep the children healthy. The average indoor temperature of the nursery rooms showed a weak negative correlation with the average relative humidity. The indoor temperature had a significant effect on the relative humidity: a higher indoor temperature resulted in lower relative humidity. Regarding the fluctuations in the average indoor temperature of the nursery rooms during the day, in daycare centers that used floor heating, the indoor temperature gradually increased form the morning to the afternoon and tended to decrease during lunch time and the morning and afternoon snack times, due to ventilation. The daycare centers that used both floor heating and ceiling-type air conditioners showed a higher indoor temperature and greater fluctuations in temperature compared to the daycare centers that used floor heating only. In the survey results, the average value of the whole body thermal sensation was 3.0 (neutral): 32 respondents (62.7%) answered, "Neutral", Which was the largest number, followed by 21 respondents (30%) who answered, "Slightly hot" and 17 respondents (24.2%) who answered, "Slightly cold." Twenty-nine respondents answered, "Slightly dry," which was the largest number, followed by 28 respondents (54.9%) who answered, "Neutral" and 10 respondents (19.6%) who answered, "Dry." The total number of respondents who answered, "Slightly dry" or "Dry" was large at 39 (56.4%), which suggests the need for indoor environment management to prevent a low-humidity environment. To summarize the above results about the thermal environment of nursery rooms, as the indoor temperature increased, the relative humidity decreased. This suggests the effect of room temperature on the indoor relative humidity; however, frequent ventilations also greatly decrease the relative humidity. Therefore, the ventilation method and the usage of air conditioning systems need to be re-examined.