• Title/Summary/Keyword: high-velocity flow

Search Result 1,452, Processing Time 0.029 seconds

A Real-Time Measurement of Slug Flow Using Electromagnetic Flowmeter with High frequency Triangular Excitation (고주파 삼각파 여자법을 사용한 실시간 슬러그 유동 측정용 전자기유량계)

  • Ahn, Yeh-Chan;Cha, Jae-Eun;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1570-1577
    • /
    • 2002
  • In order to investigate the characteristics of two-phase slug flow, an electromagnetic flowmeter with 240Hz triangular AC excitation was designed and manufactured. The signals and noise from the flowmeter were obtained, and analyzed in comparison with the observations with a high speed CCD camera. The uncertainty of the flowmeter under single-phase flow was $\pm$ 2.24% in real-time. For two-phase slug flow, electromagnetic flowmeter provided real-time simultaneous measurements of the mean film velocity around Taylor bubble and the relative location and the length of the bubble. Besides, it is an easier and cheaper method for measuring mean film velocity than others such as photochromic dye activation method or particle image velocimetry.

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.

A Study on the Flow Characteristics of Cubic Cavity with driven Flow (구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

A Study on Fluid Flow Analysis of High Pressure Positive Displacement Pump without Clearance (클리어런스가 없는 초고압 회전용적형 헬리컬기어 펌프의 유동해석에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.33-38
    • /
    • 2015
  • For the purpose of high-pressure and suction of fixed amount, the development of ultra-high pressure rotating helical gear positive displacement pump with no clearance had been proceeded. The CFD analysis was performed to verify the internal pressure and the discharge flow velocity of the pump. Accordingly, a flow analysis were performed by FVM technique and we were unable to obtain a successful result since the fluid domain is separated because the grid is not configured in a row in FVM flow analysis of the fully enclosed type without clearance. Because of these problems, the flow analysis was performed by MPS method which grid configuration is not needed and the internal pressure and the discharge flow velocity of the pump were confirmed through the MPS flow analysis. At 1,000 rpm rotation speed of the rotor, the minimum internal pressure of the pump was 19.5 bar, maximum pressure was 44.6 bar and average pressure was 33.9 bar. And the minimum discharge flow velocity was 64.5 m/s, maximum discharge flow velocity was 84.8 m/s and average discharge flow velocity was 76.1 m/s. Through this study, we could confirm that MPS method was more suitable than FVM method in terms of flow analysis with no clearance. In addition, the relationship of the flow velocity according to the change of ultra-high pressure rotating helical gear positive displacement pump could be identified through this study.

Pixel-level prediction of velocity vectors on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 유동 속도의 픽셀 수준 예측)

  • Jeongbeom Seo;Dayeon Kim;Inwon Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2023
  • In these days, high dimensional data prediction technology based on neural network shows compelling results in many different kind of field including engineering. Especially, a lot of variants of convolution neural network are widely utilized to develop pixel level prediction model for high dimensional data such as picture, or physical field value from the sensors. In this study, velocity vector field of ideal flow on ship surface is estimated on pixel level by Unet. First, potential flow analysis was conducted for the set of hull form data which are generated by hull form transformation method. Thereafter, four different neural network with a U-shape structure were conFig.d to train velocity vectors at the node position of pre-processed hull form data. As a result, for the test hull forms, it was confirmed that the network with short skip-connection gives the most accurate prediction results of streamlines and velocity magnitude. And the results also have a good agreement with potential flow analysis results. However, in some cases which don't have nothing in common with training data in terms of speed or shape, the network has relatively high error at the region of large curvature.

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

Effect of Water Velocity on Foraging Behavior of Planktivore on Zooplankton in Aquatic Ecosystems (유속조건에 따른 수중 생태계내 소형어류의 동물플랑크톤 포식 행동 변화에 관한 연구)

  • Park, Bae Kyung;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.79-83
    • /
    • 2005
  • Foraging behaviour of false dace, Pseudorasbora parva, was investigated in water flowing at various velocities with the existence of a cavity for rest. The pursuit comprised three succeeding processes such as, approaching, chasing and attacking. Angles between the fish body and the water flow direction and swimming speeds increased in the latter stages of approaching, chasing and attacking. All pursuit angles, swimming speeds and distances increased with flow velocity and peaked at the flow velocity of 7 cm/sec. At higher velocities, however, the fish avoided the use of much energy against the large drag force. The probability of capture and the feeding rate steadily decreased with increasing flow velocity. Under the fast flow, the fish adjusted their swimming speed to get the optimum velocity relative to the flowing water for the energetic budget. Fish spent more time in the cavity as flow velocity increased to avoid the energy expenditure necessitated by the high velocity.

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.