• Title/Summary/Keyword: high-velocity flow

Search Result 1,452, Processing Time 0.028 seconds

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

Echocardiographic features of indirect Gerbode defect in a cat

  • Lee, Sang-Kwon;Lee, Namsoon;Cho, Kyoung-Oh;Soliman, Mahmoud;Yun, Munsu;Choi, Jihye
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.3
    • /
    • pp.161-163
    • /
    • 2019
  • This report describes the echocardiographic features of an indirect Gerbode defect in a young cat. Echocardiography revealed high-velocity, turbulent systolic flow directed from left ventricle to right ventricle through a ventricular septal defect. The flow immediately entered the right atrium through a tricuspid septal leaflet. The indirect-type Gerbode defect was confirmed through necropsy. When a high-velocity turbulent flow in the RA without pulmonary hypertension is observed on echocardiography, Gerbode defect should be considered.

Design Characteristics of Non-Contact Type Seal for High Speed Spindle (고속주축용 비접촉 시일의 형상설계 연구)

  • 나병철;전경진;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-63
    • /
    • 1997
  • Sealing of lubricant-air mixture in the high performance machining center is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. Velocity, pressure, turbulence intensity of profile is calculated to find more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic. This paper considers a design effect of sealing capability of non- contact type seals for high speed spindle and analyzes leakage characteristics to minimize a leakage 7 on the same sealing area.

  • PDF

A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

  • PDF

Application of Superfluid Shock Tube Facility to experiment of High Reynolds number flow (초유동 충격파관 장치의 고레이놀즈수 유동실험에의 응용)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.27-30
    • /
    • 2002
  • The particle velocity in superfluid helium (He II) induced by a gas dynamic shock wave impingement onto He II free surface were studied experimentally by using Schlieren visualization method with an ultra-high speed video camera. It is found form visualization results that a dark zone in the immediate vicinity of the vapor-He II interface region is formed because of the high compressibility of He II and is developed toward bulk He II with the flowing-down speed of the vapor-He II interface. The mass velocity behind a transmitted compression shock wave that is equal to the contraction speed of He II amounts to 10 m/sec, the Reynolds number of which reaches $10^{7}$. This fact suggests that the superfluid shock tube facility can be applied to an experimental facility for high Reynols number flow as an alternative to the superfluid wind tunnel.

  • PDF

Flowing and Setting Properties of High Flowing$\cdot$High Strength Concrete using Blast-Furnace Slag according to the Chemical Agent (고로슬래그 미분말을 사용한 고유동고$\cdot$강도 콘크리트의 혼화제에 따른 유동 및 응결 특성)

  • Kim, Yong-Ro;Shim, Jae-Hyung;Kang, Suk-Pyo;Kim, Sang-Yun;Baik, Chul;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1242-1247
    • /
    • 2000
  • Results from a study on the effect of the chemical agent on the flowing and setting properties of high flowing.high strength concrete using blast-furnace slag are presented in this paper. The flowing and setting properties of concrete are investigated by slump, slump-flow, flowing velocity, L-flow, velocity of V-funnel, L-spatial passability and setting time. In addition, kinds of chemical agent were composed of naphthalene type, of naphthalene and melamine and melamine type. The results indicate that dispersive capacity can be increased by naphthalene composition. Also, it shows that viscosity and early strength can be increased by melamine composition.

  • PDF

Red Blood Cell Velocity Field in Rat Mesenteric Arterioles Using Micro PIV Technique

  • Sugii, Y;Nishio, S;Okamoto, K;Nakano, A;Minamiyama, M;Niimi, H
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. This paper describes a velocity field of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system obtained by a highly accurate PIV technique. Red blood cells (RBCs) velocity distributions with spatial resolutions of $0.8{\times}0.8{\mu}m$ were obtained even near the wall in the center plane of the arteriole. By making ensemble-averaged time-series of velocity distributions, velocity profiles over different cross-sections were calculated for comparison. The shear rate at the vascular wall also evaluated on the basis of the ensemble-averaged profiles. It was shown that the velocity profiles were blunt in the center region of the vessel cross-section while they were steep in the near wall region. The wall shear rates were significantly small, compared with those estimated from the Poiseuille profiles.

  • PDF

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

The Study on Changes of Exhaust Efficiency and Fine Particle Concentration at a Ventilation Opening by a Air Curtain Flow in a Subway Model Tunnel (지하철 모사터널에서 에어커튼을 이용한 환기구의 배기효율 및 미세입자 농도 변화 연구)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin;Jeong, Sang-Hyeon;Kim, Yong-Min;Kim, Jong-Ryul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, a new tunnel ventilation method with a high velocity air curtain flow has been investigated for improving the ventilation exhaust efficiency and removing air pollutants in subway tunnels. At upper or lower position right downstream of a main duct connected with a ventilation opening, air curtain flows were suppled into the main duct where the air flow velocity was in the range of 2~6 m/s. Exhaust efficiency was monitored for both cases with and without air curtain flow for different air velocities, locations and injection angles of the air curtain. Particulate matter concentrations (PM10, PM2.5 and PM1.0) were also checked at both the main duct and ventilation opening before and after supplying air curtain flows. Lower air velocity of the main duct flow, higher air velocity of the air curtain led to higher exhaust efficiency and the air curtain condition of 30..inclined injection toward the main flow showed the maximum exhaust efficiency. The exhaust efficiency of about 24% without the air curtain could be improved to about 34% after using the air curtain flow. PM concentration decreased at the main duct and increased at the ventilation opening after using the air curtain flow. Therefore, the suggested method to use air curtain flows in tunnels will be probably one of the promising tools to reduce air pollutants in subway tunnels.

Analysis of tail flip of the target prawn at the time of penetrating mesh in water flow by tank experiments

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • The tail flip of the decapod shrimp is a main feature in escaping behavior from the mesh of the codend in the trawl. The characteristics of tail flip in target prawn was observed and analyzed in a water tunnel in respect of flow condition and mesh penetration by a high speed video camera (500 fps). The tail bending angle or bending time in static water was significantly different than in flow water (0.7 m/s) and resultantly the angular velocity in static water was significantly higher than in flow water when carapace was fixed condition. When escaping through vertical traverse net panel in water flow the relative moving angle and relative passing angle to flow direction during tail flip, it significantly decreases the number of shrimps escaping than the case of blocking shrimp. The bending angles of tail flip between net blocking and passing through mesh were not significantly different while the bending time of shrimp passing through mesh was significantly longer than when shrimp blocking on the net. Accordingly the angular velocity of passing through mesh was significantly slower than blocking on the net although the angular velocity of the tail flip was not significantly related with carapace length. The main feature of tail flip for mesh penetration was considered as smaller diagonal direction as moving and passing angle in relation to net panel as right angle to flow direction rather than the angular velocity of tail flip.