• 제목/요약/키워드: high-velocity flow

검색결과 1,452건 처리시간 0.026초

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Micro-PIV 기법을 이용한 미세유로 내 두 유체 유동 측정 (Micro PIV measurements of two-fluid flows in a microchannel)

  • 성형진;김병재;류임정
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 2004
  • Micro PIV was applied to measure velocity profiles of two-fluid flows in a microchannel. In this work, the two-fluid flow of two glycerol-water mixtures was measured for three cases $(\phi=0\;and\;\phi=0.2;\;\phi=0.1\;and\;\phi=0.5;\;\phi=0\;and\;\phi=0.6)$. The flow rates of two fluids were the same. The experimental velocity profiles agreed well with numerical simulations. However, a slight deviation was found in the fluid with low concentration. Rather than the effects of the varying refractive indices inside the channel, the high velocity gradient effect was thought as the main source of the deviation.

  • PDF

PDMS 기반 초소수성 마이크로 채널내의 유동 및 표면 젖음 전이 가시화에 관한 연구 (Visualization of Flow and Wetting Transition in PDMS Superhydrophobic Microchannel)

  • 김지훈;홍종인;변도영;고한서
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.671-674
    • /
    • 2008
  • We investigate the slippage effect in a micro-channel depending on the surface characteristics; hydrophilic, hydrophobic, and super-hydrophobic wettabilities. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (Micro-PIV) and compared those in the hydrophilic glass, hydrophobic PDMS, and super-hydrophobic PDMS micro-channels. To directly measure the velocity in the super-hydrophobic micro-channel, the transverse groove structures are fabricated on the vertical wall in the micro-channel. The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves.

  • PDF

웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션 (Numerical Simulation of Particle Deposition on a Wafer Surface)

  • 명현국;박은성
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

Planar-Jet형 연소내 층류유동의 전산해석 (Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet)

  • 엄준석;김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

요골동맥과 첨지를 이용하여 혈류속도 파라미터와 혈류속도 사이의 상관관계 비교 (Compare correlation differnces in blood in blood flow velocity parameters and blood flow velocity the radial artery and a piece of paper as a maker)

  • 허선오;정진형;이상식
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.187-193
    • /
    • 2015
  • 혈류는 신체 안에서 일정한 속도와 압력으로 흘러야하기 때문에 혈류속도는 개개인의 건강상태를 나타내주는 측정 가능한 주요지시자이다. 최근, 혈류속도는 고가의 초음파기기를 이용하여 측정되고 있다. 본 연구에서는 고가의 장비 없이 혈류속도를 예측하고자 3개의 센서(ECG, PPG, 맥진센서)를 이용한 측정치를 독립변수로 하는 회귀모델을 구축하였다. 실험에 참여한 피검자는 심장질환에 의한 동맥경화 증상으로 병원에 입원한 환자를 대상으로 하였다. 피검자들의 나이는 55-90 세이며, 남성은 7명, 여성은 4명으로 총 11명이다. 실험에서 독립변수와 초음파기기로 측정한 혈류속도 사이의 상관성과 유의확률을 비교하여 혈류속도의 예측 가능성이 높은 회귀모델을 도출하였으며, 1개의 센서를 이용한 단일 독립변수를 적용하는 경우보다 두 개 이상의 독립변수를 적용하는 경우에서 정확한 혈류속도 예측이 가능함을 확인하였다.

노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구 (A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes)

  • 백재상;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

Vortical Flows over a Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1042-1051
    • /
    • 2004
  • The vortex flow characteristics of a sharp-edged delta wing at high angles of attack were studied using a computational technique. Three dimensional, compressible Reynolds-averaged Navier-Stokes equations were solved to understand the effects of the angle of yaw, angle of attack, and free stream velocity on the development and interaction of vortices and the relationship between suction pressure distributions and vortex flow characteristics. The present computations gave qualitatively reasonable predictions of vortical flows over a delta wing, compared with past wind tunnel measurements. With an increase in the angle of yaw, the symmetry of the pair of leading edge vortices was broken and the vortex strength was decreased on both windward and leeward sides. An increase in the free stream velocity resulted in stronger leading edge vortices with an outboard movement.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF