• Title/Summary/Keyword: high-velocity

Search Result 4,964, Processing Time 0.031 seconds

Upflow Velocity Effects on Behavior of Reaction Products in USAB Reactor (UASB 반응조에서 상향유속에 따른 높이별 반응생성물의 거동특성)

  • 이헌모;윤종호;정용현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.14-25
    • /
    • 1998
  • To investigate the behavior of reaction products with the reactor heights by the change of upflow velocity, a typical real height USAB reactor was built and experiment was conducted. The flow in the reactor by the upflow velocity was flug flow at low upflow velocity but the flow was completely mixed flow at high upflow velocity. Therefore, the concentration of pH, alkalinity and volatile acid was not so different with reactor heights at high upflow velocity. And comparing with low upflow velocity, the distribution of microorganisms with reactor heights did not show big different at high upflow velocity. The removal efficiency of organic compounds depended on the distribution of microorganisms and it was low at high upflow velocity. It is concluded that the operation of reactor with proper upflow velocity to improve contact with organic compounds and microorganisms is recommended.

  • PDF

High-Velocity Impact Behavior Characteristics of Aluminum 6061 (알루미늄 6061의 고속 충격 거동 특성 연구)

  • Byun, Seon-Woo;Ahn, Sang-Hyeon;Baek, Jun-Woo;Lee, Soo-Yong;Roh, Jin-Ho;Jung, Il-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.465-470
    • /
    • 2022
  • This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

Automatic Velocity Analysis by using an High-resolution Bootstrapped Differential Semblance Method (고해상도 Bootstrapped Differential Semblance를 이용한 자동 속도분석)

  • Choi, Hyungwook;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.225-233
    • /
    • 2013
  • The accuracy of the automatic NMO velocity analysis, which is used for an effective and objective NMO velocity analysis, is highly affected by the velocity resolution of the velocity spectrum. In this study, we have developed an automatic NMO velocity algorithm, where the velocity spectra are created using high-resolution bootstrapped differential semblance (BDS), and the velocity analysis on CMP gathers is performed in parallel with MPI. We also compared the velocity models from the developed automatic NMO velocity algorithm with high-resolution BDS to those from BDS. To verify the developed automatic velocity analysis module we created synthetic seismic data from a velocity model including horizon layers. We confirmed that the developed automatic velocity analysis module estimated velocity more accurately. In addition, NMO velocity which yielded a CMP stacked section, where the coherency of the events were improved, was estimated when the developed module was applied to a marine field data set.

Characteristics of Laminar Lifted Flame In High Temperature Coflow Burner (고온 동축류버너에서 층류부상화염 특성)

  • Kim, K.N.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.104-110
    • /
    • 2001
  • Characteristics of lifted flame for highly diluted propane with nitrogen in high temperature coflowing air have been experimentally investigated, and the stabilization mechanism of lifted flame in high temperature air coflow have been proposed. As the coflow temperature increases, the liftoff height of flame decreased due to the increase of stoichiometry laminar burning velocity. At same coflow temperature, the difference of liftoff height between the fuel mole fractions has been disappeared by scaling the liftoff velocity with stoichiometry laminar burning velocity. It has been found that lifted flame can be stabilized for even smaller fuel velocity than stoichiometry laminar burning velocity. This can be attributed to buoyancy effect and the liftoff velocity characteristics for coflow temperature support it.

  • PDF

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

A Study on the Interpretation of the Dynamical Properties of the High Velocity Stars (고속도성(高速度星)의 역학적해석(力學的解釋)에 대(對)한 연구(硏究))

  • Lee, Young-Bom;Yu, Kyung-Loh
    • Journal of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1971
  • The average velocity, 330km/sec. of the high velocity stars with respect to the galactic center is obtained from the data used by Fricke on the assumption that the rotational velocity of the Local Standard of Rest is 250km/sec. Comparing this value with the escape velocity, 380km/sec, at the solar neighborhood which is calculated from Mestel's model of the Galaxy, it is shown that most of the high velocity stars are bound to the Galaxy and that their average apogalacticon is about 40 kpc from the galactic center. And the fact that stars with radial velocities larger than 63km/sec are missing in the direction of galactic rotation of L.S.R. is interpreted as the result partly of the random distribution of the directions of motion of the high velocity stars and partly of the observational errors.

  • PDF

Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by a Pressureless Metal Infiltration Process (무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성)

  • 김재동;정순억;김형진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • The effect of size and volume fraction of ceramic particles, with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by the pressureless infiltration process. The metal matrix composites exhibited about 5.5 - 6 times the wear resistance compared with AC8A alloy at high sliding velocity, and by increasing the particle size and decreasing the volume fraction, the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity, linearly : whereas, metal matrix composites indicated more wear loss than AC8A alloy at the slow velocity region. However, a transition point of wear loss was found at the middle velocity region, which shows the minimum wear loss. Further, wear loss at the high velocity region exhibited nearly the same value as the slow velocity region. In terms of wear mechanism, the metal matrix composites generally exhibited abrasive wear at slow to high sliding velocity; however, AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by Pressureless Metal Infiltration Process (무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성)

  • Kim, Jae-Dong;Jung, Sun-Uk;Kim, Hyung-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.379-384
    • /
    • 2002
  • The effect of size and volume fraction of ceramic particles with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by pressureless infiltration process. The particulate metal matrix composites exhibited about 5.5 - 6 times of excellent wear resistance compared with AC8A alloy at high sliding velocity, and as increasing the particle size and decreasing the volume fraction the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity linearly. whereas metal matrix composites indicated more wear loss than AC8A alloy at slow velocity region, however a transition point of wear loss was found at middle velocity region which show the minimum wear loss, and wear loss at high velocity region exhibited nearly same value with slow velocity region. In terms of wear mechanism, the metal matrix composites exhibited the abrasive wear at slow to high sliding velocity generally, however AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

  • PDF

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

An Accurate Velocity Estimation using Low Resolution Tachometer of High-Speed Trains (고속열차의 저해상도 타코미터를 이용한 정확한 속도 추정에 관한 연구)

  • Lee, Jae-Ho;Kim, Seong Jin;Park, Sungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.131-136
    • /
    • 2018
  • Reliable velocity estimation technology for trains is one of technologies used to operate trains safely and effectively. Various sensors such as tachometers, doppler radars, and global positioning systems are used to estimate velocity of a train. Tachometer is widely used to estimate velocity of a trains due to its simplicity, small volume, cost-effectiveness, continuously measurement at high speed, and robustness against noise. Accuracy in the velocity calculation using a tachometer depends on quantization error, measurement error of wheel radius or diameter, and tachometer's imperfection from manufacturing or installation process. In this paper, we present an accurate velocity estimation method using a low-resolution tachometer, which is commonly installed on a high-speed train. Baseline estimation method is proposed to accurately calculate the velocity of the high-speed train from tachometer's pulses. HEMU-430x test train is used for the experiment and verification of the proposed method. Experimental results with several routes show that the proposed method is more accurate than a conventional method.