• Title/Summary/Keyword: high-throughput technologies

Search Result 138, Processing Time 0.031 seconds

Integration of metabolomics and transcriptomics in nanotoxicity studies

  • Shin, Tae Hwan;Lee, Da Yeon;Lee, Hyeon-Seong;Park, Hyung Jin;Jin, Moon Suk;Paik, Man-Jeong;Manavalan, Balachandran;Mo, Jung-Soon;Lee, Gwang
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics."

Relaying of 4G Signal over 5G Suitable for Disaster Management following 3GPP Release 18 Standard

  • Jayanta Kumar Ray;Ardhendu Shekhar Biswas;Arpita Sarkar;Rabindranath Bera;Sanjib Sil;Monojit Mitra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.369-390
    • /
    • 2023
  • Technologies for disaster management are highly sought areas for research and commercial deployment. Landslides, Flood, cyclones, earthquakes, forest fires and road/train accidents are some causes of disasters. Capturing video and accessing data in real time from the disaster site can help first responders make split second decisions which may save human lives and valuable resource destructions. In this context the communication technologies performing the task should have high bandwidth and low latency which only 5G can deliver. But unfortunately in India, deployment of the 5G mobile communication systems is yet to give a shape and again in remote areas unavailability of 4G signals is still severe. In this situation the authors have proposed, simulated and experimented a 4G-5G communication scheme where from the disaster site the signals will be transmitted by a 5G terminal to a nearby 4G-5G gateway installed in a mobile vehicle. The received 5G signal will be further relayed by the 4G-5G gateway to the fixed 4G base station for onward transmission towards the disaster management station for decision making, deployment and relief monitoring. The 4G-5G gateway acts as a relay and converter of 5G signal to 4G signal and vice versa. This relayed system can be further mounted on a vehicle mounted relay (VMR) as proposed by 3GPP in Release 18. The scheme is also in the same line of context with Verizon's, "Tactical Humanitarian Operations Response" (THOR) vehicle concept. The performance of the link is studied in different channel conditions, the throughput achieved is superb. The authors have implemented the above mentioned system towards smart campus networking and monitoring landslides activities which are common in their regions.

Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

  • Cho, Jae Yong
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2013
  • Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.

Manufacturing a Single Cell Gap Transflective Liquid Crystal Display by Using Ink Jet Printing Technology

  • Sha, Y.A.;Su, P.J.;Hsieh, C.H.;Chang, K.H.;Chen, C.H.;Hsiao, C.C.;Shiu, J.W.;Fuh, S.Y.;Cheng, W.Y.;Liao, Y.C.;Yang, J-C;Lo, K.L.;Lee, D.W.;Lee, K.C.;Chang, Y.P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1533-1536
    • /
    • 2006
  • A novel single cell gap transflective liquid crystal display was developed. By using the ink jet printing technology, we fabricated a transflective liquid crystal display with the hybrid alignment in the reflective region and the homogeneous alignment in the transmission region. Compared with the traditional technologies, our technology provided the advantages of easy process, high yield, fast throughput, and less material usage. We also applied this technology to the 2.4 inch prototype. This panel could be implemented in the handheld product applications.

  • PDF

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

A Study of Fronthaul Networks in CRANs - Requirements and Recent Advancements

  • Waqar, Muhammad;Kim, Ajung;Cho, Peter K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4618-4639
    • /
    • 2018
  • One of the most innovative paradigms for the next-generation of wireless cellular networks is the cloud-radio access networks (C-RANs). In C-RANs, base station functions are distributed between the remote radio heads (RHHs) and base band unit (BBU) pool, and a communication link is defined between them which is referred as the fronthaul. This leveraging link is expected to reduce the CAPEX (capital expenditure) and OPEX (operating expense) of envisioned cellular architectures as well as improves the spectral and energy efficiencies, provides the high scalability, and efficient mobility management capabilities. The fronthaul link carries the baseband signals between the RRHs and BBU pool using the digital radio over fiber (RoF) based common public radio interface (CPRI). CPRI based optical links imposed stringent synchronization, latency and throughput requirements on the fronthaul. As a result, fronthaul becomes a hinder in commercial deployments of C-RANs and is seen as one of a major bottleneck for backbone networks. The optimization of fronthaul is still a challenging issue and requires further exploration at industrial and academic levels. This paper comprehensively summarized the current challenges and requirements of fronthaul networks, and discusses the recently proposed system architectures, virtualization techniques, key transport technologies and compression schemes to carry the time-sensitive traffic in fronthaul networks.

A Localized Mobility Support Scheme for Mobile Nudes in IPv6 Networks (IPv6 네트워크에서 이동 단말의 지역적 이동성 제공 방안)

  • 전홍선;우미애
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8B
    • /
    • pp.762-770
    • /
    • 2004
  • With rapid advances in wireless communication technologies and with the advent of the smaller and high-performance mobile handsets nowadays, many researches are actively performed for providing seamless communications while mobile nodes are roaming around. As real-time application programs are more prevalent, it is very important to manage mobility of mobile nodes efficiently. In this paper, we propose a localized mobility support scheme that is based on the Mobile IPv6 by IETF. The proposed scheme enhances functionalities in mobile nodes and only uses signaling messages of Mobile IPv6. The performance of the proposed scheme is evaluated through analytical model and simulations. According to the results of the evaluation, the proposed scheme provides better performance than Mobile IPv6 in terms of packet losses and TCP throughput by localizing the binding update messages inside the foreign domain during handoffs and reducing binding update time.

Performance Analysis of Buffer Aware Scheduling for Video Services in LTE Network

  • Lin, Meng-Hsien;Chen, Yen-Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3594-3610
    • /
    • 2015
  • Recent advancements in broadband wireless communication technologies enable mobile users to receive video streaming services with various smart devices. The long term evolution (LTE) network provides high bandwidth and low latency for several emerging mobile applications. This paper proposes the buffer aware scheduling (BAS) approach to schedule the downlink video traffic in LTE network. The proposed BAS scheme applies the weighting function to heuristically adjust the scheduling priority by considering the buffer status and channel condition of UE so as to reduce the time that UE stays in the connected state without receiving data. Both of 1080P and 2160P resolution video streaming sources were applied for exhaustive simulations to examine the performance of the proposed scheme by comparing to that of the fair bandwidth (FB) and the best channel quality indicator (CQI) schemes. The simulation results indicate that the proposed BAS scheme not only achieves better performance in power saving, streaming delivery time, and throughput than the FB scheme while maintaining the similar performance as the best CQI scheme in light traffic load. Specifically, the proposed scheme reduces streaming delivery time and generates less signaling overhead than the best CQI scheme when the traffic load is heavy.

Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles (담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발)

  • Kim, Do-Gyun;Choe, Yong-Seong;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

An Efficient Complex Event Detection Algorithm based on NFA_HTS for Massive RFID Event Stream

  • Wang, Jianhua;Liu, Jun;Lan, Yubin;Cheng, Lianglun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.989-997
    • /
    • 2018
  • Massive event stream brings us great challenges in its volume, velocity, variety, value and veracity. Picking up some valuable information from it often faces with long detection time, high memory consumption and low detection efficiency. Aiming to solve the problems above, an efficient complex event detection method based on NFA_HTS (Nondeterministic Finite Automaton_Hash Table Structure) is proposed in this paper. The achievement of this paper lies that we successfully use NFA_HTS to realize the detection of complex event from massive RFID event stream. Specially, in our scheme, after using NFA to capture the related RFID primitive events, we use HTS to store and process the large matched results, as a result, our scheme can effectively solve the problems above existed in current methods by reducing lots of search, storage and computation operations on the basis of taking advantage of the quick classification and storage technologies of hash table structure. The simulation results show that our proposed NFA_HTS scheme in this paper outperforms some general processing methods in reducing detection time, lowering memory consumption and improving event throughput.