• 제목/요약/키워드: high-throughput nucleotide sequencing

검색결과 48건 처리시간 0.019초

Xeroderma pigmentosum group A with mutational hot spot (c.390-1G>C in XPA ) in South Korea

  • Choi, Jung Yoon;Yun, Hyung Ho;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • 제13권1호
    • /
    • pp.20-25
    • /
    • 2016
  • Purpose: Xeroderma pigmentosum (XP) is rare autosomal recessive genetic disorder of DNA repair in which the ability to repair damage caused by ultraviolet light is deficient. We reported the first molecularly confirmed Korean patient of XP by targeted exome sequencing. The prevalence of XP included all subtype and carrier frequency of XP-A the using public data were estimated for the first time in South Korea. Materials and Methods: We described a 4-year-old Korean girl with clinical diagnosis of XP. We performed targeted exome sequencing in the patient for genetic confirmation considering disease genetic heterogeneity and for differential diagnosis. We verified a carrier frequency of c.390-1G>C in XPA gene known as mutational hot spot using Korean Reference Genome Data Base. We estimated the period prevalence of all subtypes of XP based on claims data of the Health Insurance Review and Assessment Service in South Korea. Results: We identified homozygous splicing mutation of XPA (c.390-1G>C) in the patient. The carrier frequency of risk for XPA (c.390-1G>C) was relatively high 1.608 e-03 (allele count 2/1244). The prevalence of XP in South Korea was 0.3 per million people. Conclusion: We expect that c.390-1G>C is hot spot for the mutation of XPA and possible founder variant in South Korea. However, the prevalence in South Korea was extremely low compared with Western countries and Japan.

Noninvasive prenatal test for the pregnancy with Turner syndrome mosaicism 45, X/47, XXX: A case report

  • Kim, Ji Hye;Lee, Gun Ho;Cha, Dong Hyun;Cho, Eun-Hae;Jung, Yong Wook
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.118-122
    • /
    • 2015
  • Noninvasive prenatal test (NIPT) is a novel screening method for the diagnosis of fetal chromosomal aneuploidies. NIPT is based on technology that detects cell-free fetal DNA in maternal plasma and analyzes it with massively parallel sequencing technology to determine whether the fetus is at risk of trisomy 21, trisomy 18, trisomy 13 or sex chromosome abnormalities (SCAs). NIPT has been reported to have sensitivity of 99% and a false positive rate of less than 1% for detecting trisomy 21 and trisomy 18. Although extension of the application of NIPT to other SCAs has been attempted, there are concerns in extending NIPT to SCAs because of maternal or fetal mosaicism, undetected maternal SCAs, and multiple pregnancies. Recently, we assessed a pregnancy with the rare Turner syndrome mosaicism 45, X/47, XXX, which was reported as 45, X with NIPT. We present the case here and briefly review the current literatures on NIPT in testing for fetal monosomy X. To the best of our knowledge, this is the first report of the 45, X/47, XXX mosaicism in Korea to be reported as 45, X by NIPT with whole genome sequencing. This case report will provide valuable information for counseling women who want to undergo NIPT.

Microbial profiling of peri-implantitis compared to the periodontal microbiota in health and disease using 16S rRNA sequencing

  • Hyun-Joo Kim;Dae-Hee Ahn;Yeuni Yu;Hyejung Han;Si Yeong Kim;Ji-Young Joo;Jin Chung;Hee Sam Na;Ju-Youn Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.69-84
    • /
    • 2023
  • Purpose: The objective of this study was to analyze the microbial profile of individuals with peri-implantitis (PI) compared to those of periodontally healthy (PH) subjects and periodontitis (PT) subjects using Illumina sequencing. Methods: Buccal, supragingival, and subgingival plaque samples were collected from 109 subjects (PH: 30, PT: 49, and PI: 30). The V3-V4 region of 16S rRNA was sequenced and analyzed to profile the plaque microbiota. Results: Microbial community diversity in the PI group was higher than in the other groups, and the 3 groups showed significantly separated clusters in the buccal samples. The PI group showed different patterns of relative abundance from those in the PH and PT groups depending on the sampling site at both genus and phylum levels. In all samples, some bacterial species presented considerably higher relative abundances in the PI group than in the PH and PT groups, including Anaerotignum lactatifermentans, Bacteroides vulgatus, Faecalibacterium prausnitzii, Olsenella uli, Parasutterella excrementihominis, Prevotella buccae, Pseudoramibacter alactolyticus, Treponema parvum, and Slackia exigua. Network analysis identified that several well-known periodontal pathogens and newly recognized bacteria were closely correlated with each other. Conclusions: The composition of the microbiota was considerably different in PI subjects compared to PH and PT subjects, and these results could shed light on the mechanisms involved in the development of PI.

오가노이드를 활용한 약물 검색 플랫폼 (Drug Discovery Platform Using Organoids)

  • 맹주은;김순찬;송명현;정나현;구자록
    • Journal of Digestive Cancer Research
    • /
    • 제10권2호
    • /
    • pp.82-91
    • /
    • 2022
  • Gastrointestinal cancer accounts for one-third of the overall cancer occurrence worldwide. Pancreatic ductal adenocarcinoma (PDAC) is a type of gastrointestinal cancer that is known to be one of the most fatal among all cancer types, with a 5-year survival rate of less than 8%. Chemotherapy combined with surgical resection is its probable curative option. However, surgery is accessible for only 10-15% of patients diagnosed with PDAC. Organoids show self-organizing capacities and resemble the original tissue in terms of morphology and function. Organoids can also be cultured with high effectiveness from tumor tissues derived from each patient, making them an extremely fitting model for translational uses and improving personalized cancer medicine. Enhancing drug screening platforms is necessary to apply personalized medicinebased organoids in clinical settings.

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Application of Cancer Genomics to Solve Unmet Clinical Needs

  • Lee, Se-Hoon;Sim, Sung Hoon;Kim, Ji-Yeon;Cha, SooJin;Song, Ahnah
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.174-179
    • /
    • 2013
  • The large amount of data on cancer genome research has contributed to our understanding of cancer biology. Indeed, the genomics approach has a strong advantage for analyzing multi-factorial and complicated problems, such as cancer. It is time to think about the actual usage of cancer genomics in the clinical field. The clinical cancer field has lots of unmet needs in the management of cancer patients, which has been defined in the pre-genomic era. Unmet clinical needs are not well known to bioinformaticians and even non-clinician cancer scientists. A personalized approach in the clinical field will bring potential additional challenges to cancer genomics, because most data to now have been population-based rather than individualbased. We can maximize the use of cancer genomics in the clinical field if cancer scientists, bioinformaticians, and clinicians think and work together in solving unmet clinical needs. In this review, we present one imaginary case of a cancer patient, with which we can think about unmet clinical needs to solve with cancer genomics in the diagnosis, prediction of prognosis, monitoring the status of cancer, and personalized treatment decision.

A novel variant of PHEX in a Korean family with X-linked hypophosphatemic rickets

  • Kim, Sejin;Kim, Sungsoo;Kim, Namhee
    • Journal of Genetic Medicine
    • /
    • 제19권1호
    • /
    • pp.27-31
    • /
    • 2022
  • X-linked dominant hypophosphatemic rickets are the most common form of familial hypophosphatemic rickets resulting from hypophosphatemia caused by renal phosphate wasting, which in turn is a result of loss-of-function mutations in PHEX. Herein, we report a 39-year-old female with short stature and skeletal deformities and 12-month-old asymptomatic daughter. The female has a history of multiple surgical treatments because of lower limb deformities. Her biochemical findings revealed low serum phosphorus levels with elevated serum alkaline phosphatase activity and normal serum calcium levels, suggesting presence of hypophosphatemic rickets. To identify the molecular causes, we used a multigene testing panel and found a mutation, c.667dup (p.Asp223GlyfsTer15), in PHEX gene. To the best of our knowledge, this is a novel mutation. A heterozygous form of the same variant was detected in daughter, who showed no typical symptoms such as bow legs, frontal bossing, or waddling gate, but presented early signs of impaired mineralization in both X-ray and biochemical findings. The daughter was initiated onto early medical treatment with oral phosphate supplementation and an active vitamin D analog. Because the daughter was genetically diagnosed based on a family history before the onset of symptoms, appropriate medical management was possible from early infancy.

Identification of causative mutations in patients with Leigh syndrome and MERRF by mitochondrial DNA-targeted next-generation sequencing

  • Hong, Hyun Dae;Kim, Eunja;Nam, Soo Hyun;Yoo, Da Hye;Suh, Bum Chun;Choi, Byung-Ok;Chung, Ki Wha
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.109-117
    • /
    • 2015
  • Purpose: Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make their exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mitochondrial DNA (mtDNA) mutations in 2 Korean families with myoclonic epilepsy with ragged-red fibers (MERRF) and Leigh syndrome, respectively. Materials and Methods: Whole mtDNAs were sequenced by the method of mtDNA-targeted next-generation sequencing (NGS). Results: Two causative mtDNA mutations were identified from the NGS data. An m.8344A>G mutation in the tRNA-Lys gene (MT-TK) was detected in a MERRF patient (family ID: MT132), and an m.9176T>C (p.Leu217Pro) mutation in the mitochondrial ATP6 gene (MT-ATP6) was detected in a Leigh syndrome patient (family ID: MT130). Both mutations, which have been reported several times before in affected individuals, were not found in the control samples. Conclusion: This study suggests that mtDNA-targeted NGS will be helpful for the molecular diagnosis of genetically heterogeneous mitochondrial diseases with complex phenotypes.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Genome characterization and mutation analysis of human influenza A virus in Thailand

  • Rattanaburi, Somruthai;Sawaswong, Vorthon;Nimsamer, Pattaraporn;Mayuramart, Oraphan;Sivapornnukul, Pavaret;Khamwut, Ariya;Chanchaem, Prangwalai;Kongnomnan, Kritsada;Suntronwong, Nungruthai;Poovorawan, Yong;Payungporn, Sunchai
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.21.1-21.14
    • /
    • 2022
  • The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in hemagglutinin (HA) and neuraminidase (NA) genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, HA, and NA genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.