• 제목/요약/키워드: high-strength concrete, flexural behavior

검색결과 265건 처리시간 0.026초

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

주철근비에 따른 고강도 콘크리트 보의 휨거동 (The Effect of Longitudinal Steel Ratio on Flexural Behavior of Reinforced High Strength Concrete Beams)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 1994
  • Eight singly reinforced high strength concrete beams were tested to investigate their flexural behavior. The variable is tensile steel raio. The test results are presented in terms of load-deformation behavior, ductility indexes, and cracking patterns. The flexural strengths obtained experimentally are compapred to the analytical results, and good agreements are obtained. The flexural design provisions of the ACI Building Code are found to be adequate to predict the strength of reinforced high-strength concrete beams.

  • PDF

Belite 시멘트를 사용한 고강도 철근콘크리트 보의 휨 거동에 관한 실험연구 (An Experimental Study on the Flexural Behavior of Reinforced High-Strength Concrete Beams with Belite Cement)

  • 한상훈;구봉근;김기수;윤상문;조흥동;전채만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.499-504
    • /
    • 1998
  • Objective of this study is to investigate experimentally the flexural behavior of reinforced high-strength concrete beams with Belite cement by comparing with those of normal reinforced concrete beams. The flexural tests are conducted on fourteen specimens having concrete compressive strength of 350 and 600kg/$\textrm{cm}^2$. The main experimental variables are compressive strength of concrete and reinforcement ratios. The load-displacement relationships, the section behavior of beam as a function of the location neutral axis, and ductility capacity are investigated. From the test results, the flexural behavior of reinforced high-strength concrete beams wite Belit cement are similar to the behavior of normal reinforced concrete beams.

  • PDF

LMC로 보강된 철근콘크리트 보의 파괴거동 (Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete)

  • 김성환;정원경;김기헌;김동호;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.

포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동 (An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams)

  • 이성철;최영철;오병환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF

Belite 시멘트를 사용한 고강도 철근콘크리트 보의 휨 거동에 관한 실험연구 (An Experimental Study on the Flexural Behavior of Reinforced High-Strength Concrete Beams Using Belite Cement)

  • 한상훈;구봉근;김기수;조홍동;전채만
    • 콘크리트학회지
    • /
    • 제11권1호
    • /
    • pp.221-230
    • /
    • 1999
  • 본 연구는 Belite를 사용한 고강도 철근콘크리트 보의 휨 거동에 관한 연구이다. 이를 위하여 Belite 시험체의 (1) 하중-처짐 관계와 시험체 중앙단면의 변형률 분호, (2) 하중-중립축관계와 모멘트-곡률 관계, (3) 연성평가, (4) 기존규준식과 실험값에 의한 휨강도 비교 등을 통하여 1종 보통 포트랜드 시멘트를 사용한 기준시험체(OPC)의 실험결과와 비교분석 하였다. 주요 실험변수는 콘크리트의 강도(350, 600kgf/$cm^2$)와 철근비(2D-13, 2D-16, 2D-19, 2D-22 and 2D-25)로 하였으며, 3점 재하를 실시하였다. 실험결과, 고강도${\cdot}$고유동 Belite 콘크리트를 사용한 본 실험의 경우, 전반적으로 1종 콘크리트의 휨거동 특성과 비슷한 경향을 보였다.

순수휨 구간내 스터럽이 보강된 고강도 콘크리트 보의 휨거동 연구 (Flexural Behavior of High-Strength Concrete Beams with Confinement in Pure Bending Zone)

  • 장일영;박훈규;황규철;남성현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.959-964
    • /
    • 2002
  • The purpose of this study is to establish flexural behavior of high-strength concrete by means of both theoretical approach and experimental analysis of beams in which confinement stirrups have been introduced into pure bending zone. The experiment was carried out on full-scale high-strength reinforced concrete beams whose compressive strengths are 400 and 700kgf/cm$^2$, and confined with rectangular closed stirrups. The test results are reviewed in terms of flexural capacity and ductility.

  • PDF

철근 보강 고강도 폴리머 콘크리트 보의 휨특성 (Flexural Performance of Reinforced Polymer Concrete Beams with High Strength)

  • 연규석;김관호;김기락
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.136-141
    • /
    • 1998
  • While a little research has been peformed on flexural behavior of reinforced polymer concrete (RPC)beams with the compressive strength lower than 900kg/$\textrm{cm}^2$ vary little exists in conjunction with the behavior of RPC 1,000kg/$\textrm{cm}^2$ or higher in compressive strength. In this paper the flexural performance of high strength polymer concrete beams with 1,450kg/$\textrm{cm}^2$ in compressive strength was evaluated. The unsaturated polyester resin was used to make polymer concrete as binder. The beams with stirrup singly/doubly were tested to examine the effect of tensile reinforcement ratio. As test results, reinforcement ratio increased with the increase moment strength, decreased with ultimate deflection, ductility index.

  • PDF