• Title/Summary/Keyword: high-speed spindle

Search Result 416, Processing Time 0.027 seconds

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling (밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구)

  • Kim, Seog-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

Performance Evaluation according to Optical Power of Laser Diode of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle. (고속주축 모니터링용 광파이버 변위센서의 레이저 다이오드 출력에 따른 성능평가)

  • 박찬규;신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.376-380
    • /
    • 2004
  • This paper is to develop an optical ruer displacement sensor for monitoring high speed spindle. Proper magnitude of optical power as well as amplification of output signal are necessary to improve sensitivity of the sensor. In this paper, to meet the need of improvement of the sensor resolution, we choose proper optical power and amplification level through speculating on optical power of a laser diode.

  • PDF

A Study on the Thermal Characteristics of the High Speed Spindle considering Heat Transfer (열전달을 고려한 고속 주축계의 열특성 해석에 관한 연구)

  • 백경근;김수태;최대봉;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.285-290
    • /
    • 2000
  • Unsteady-state temperature distributions and thermal deformations in high speed spindle are studied. For the analysis, three dimensional model is built considering heat transfer characteristics such as natural and forced convection coefficients Temperature distributions and thermal deformations are analyzed by using the finite element method. Results of analysis are compared with the measured data.

  • PDF

Evaluation of Vibration Characteristics and Machinability of High Speed Machining Center (고속 머시닝센터의 진동특성 및 가공성 평가)

  • 강익수;강명창;김정석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.424-429
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation for HMC is not sufficiently performed and the efficient cutting conditions can't be selected, a peat loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented by the analysis of acceleration in idling. The Machinability for the TiA1N coated flat end mill and STD11 (H$\sub$R/C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions . The resonance spindle speed is identified through the tool wear and natural frequency test.

  • PDF

A Study on Surface Roughness of Al alloy 7075 to Cutting depth in High-speed Machining (고속가공의 절삭 깊이에 따른 알루미늄 합금 7075의 표면 거칠기에 대한 연구)

  • Park, Eun-sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.29-35
    • /
    • 2010
  • Recently the industry high-speed machining has been applied to the automotive, aircraft, electronics parts machining because the effect of cost savings, machining time reduction and productivity improvement. In this study recently the aircraft structural aluminum alloy 7075 used in cutting the ball end-mill on the surface roughness terms most affect the parameters of the spindle speed and feed rate on the surface roughness of the work-piece according to the cutting depth is to investigate. Cutting depth at 0.3 mm has the lowest surface roughness.

A Study on the Effect of Dimensional Errors and Roundness in High Speed Cylindrical Machining Al-alloy (Al합금의 고속 원통가공에서 발생하는 치수오차와 진원도의 영향 고찰)

  • 윤종학;서성원;이헌철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.17-24
    • /
    • 2001
  • Recently, the requirements for high precision and efficiency machining are gradually increased to raise international competitiveness at the industrial fields of die and molds. This trend had made effects on the industrial fields in Korea and which needs fur studying of high precision and efficiency machining. This study is to investigate the effects of the non-out of end mill in the external cylindrical machining operated by solid carbide end mills with Al-alloy in high speed machining center relating to high spindle revolution and frost fred per minute on the dimensional precision, roundness of workpiece. From the results of experimentations followings are obtained; when Al-alloy is processed by the external cylindrical cutting of end milling through the high speed revolution, if the spindle revolution is higher relating to radial depth of cut, feed per tooth in very lower situation, finally, productivity can be raised because high precision and quality products are machined high efficiently.

  • PDF