• 제목/요약/키워드: high-speed imaging

검색결과 240건 처리시간 0.025초

고속 레이다 영상자료 전송을 위한 위성탑재 데이터 링크 설계 (Spaceborne Data Link Design for High Rate Radar Imaging Data Transmission)

  • 곽영길
    • 대한전자공학회논문지TC
    • /
    • 제39권3호
    • /
    • pp.117-124
    • /
    • 2002
  • 고해상도 위성 영상 레이다(SAR)에서 획득한 대용량의 레이다 영상신호는 주어진 임무시간 내에 실시간으로 지상에 전송해 주어야 하기 때문에 위성탑재 영상 레이다의 고속 데이터 전송 능력이 시스템의 성능을 결정하는 중요한 요인이 되고 있다. 본 논문에서는 소형 경량의 위성 SAR의 임무 요구 조건을 만족하고, 위성 영상 레이다의 운용모드에 따라 고해상도에서 광역모드에 이르기까지 광범위한 데이터를 고속으로 처리할 수 있는 멀티 채널 데이터 전송모듈 설계에 관하여 논한다. 주어진 위성 데이터 링크 모델을 바탕으로 링크 버짓과 영상 모드별 데이터 전송률을 분석하고, 시스템의 요구 전송율과 오차율을 만족하는 온 보드 영상 자료 저장기, 자료 처리기, 송신기 및 전송 안테나의 설계 결과를 제시하고 성능을 분석하였다. 본 설계에 적용된 고속 채널 모듈은 고속자료 전송이 요구되는 위성 및 항공기 탑재 데이터 링크의 성능확장에 효과적으로 활용될 수 있다.

Two Paralleled Four Quadrant DC Chopper for Gradient Coil Magnetic Fields in MRI System

  • Park, Hyung-Beom;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.22-27
    • /
    • 2009
  • This paper presents a two-paralleled four quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This circuit has 8-IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective DSP-based control system realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성 (Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera)

  • 이상진;박원규;이상태;이우영;하만경
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성 (Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera)

  • 김흥배;이우영;최성주;유중학
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

MRI의 현황과 전망

  • 전희국
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

Multi-Detector Row CT를 이용한 중심부 기도 질환의 평가 (Multi-Detector Row CT of the Central Airway Disease)

  • 강은영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권3호
    • /
    • pp.239-249
    • /
    • 2003
  • Multi-detector row CT (MDCT) provides faster speed, longer coverage in conjunction with thin slices, improved spatial resolution, and ability to produce high quality muliplanar and three-dimensional (3D) images. MDCT has revolutionized the non-invasive evaluation of the central airways. Simultaneous display of axial, multiplanar, and 3D images raises precision and accuracy of the radiologic diagnosis of central airway disease. This article introduces central airway imaging with MDCT emphasizing on the emerging role of multiplanar and 3D reconstruction.

치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템 (A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus)

  • 이창호;우채경;정웅규;강현욱;오정환;김지현
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

FPGA를 이용한 고속 영상처리보드의 개발 (Development of the real-time Imaging Processing Board Using FPGA)

  • 류형규;박홍민
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.449-452
    • /
    • 1998
  • In this study, the basic image-board and algorithm has been developed to extract a road lane by modeling the driving process. The high speed processing enables an image capture, processing and prompt decision making. In order to high speed processing ASIC like FPGA was designed and integrated in one board system. The algorithm enabling road driving must recognize a straight and bend edge separately. The high speed image processing board using FPGA can be used in real-time decision makeing system for road driving and in the machine vision under bad working environments like a coal mine. And it also can be used in the safety control system in subway and in image input system of CCTV and CATV by designing the board to meet various user's needs.

  • PDF

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

Fast temporal detection of intracellular hydrogen peroxide by HyPer

  • Yang, Yu-Mi;Lee, Sung Jun;Shin, Dong Min
    • International Journal of Oral Biology
    • /
    • 제38권4호
    • /
    • pp.169-173
    • /
    • 2013
  • HyPer is the genetically encoded biosensor of intracellular hydrogen peroxide ($H_2O_2$), the most stable of the reactive oxygen species (ROS) generated by living cells. HyPer has a high sensitivity and specificity for detecting intracellular $H_2O_2$ by confocal laser microscopy. However, it was not known whether high speed ratiometric imaging of $H_2O_2$ by HyPer is possible. We thus investigated the sensitivity of HyPer in detecting changes to the intracellular $H_2O_2$ levels in HEK293 and PC12 cells using a microfluorometer imaging system. Increase in the HyPer ratio were clearly evident on stimulations of more than $100{\mu}M$ $H_2O_2$ and fast changes in the HyPer ratio were observed on ratiometric fluorescent images after $H_2O_2$ treatment. These results suggest that HyPer is a potent biosensor of the fast temporal production of intracellular $H_2O_2$.