• 제목/요약/키워드: high-speed hot rolling

검색결과 24건 처리시간 0.02초

고속도공구강롤을 적용한 열간유압연 사용특성 연구 (Investigation of Effect of Hot Rolling Oil of on Rolling with HSS Roll)

  • 유재희;황상무;김철희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.115-118
    • /
    • 1997
  • Recently, hot rolling oil lubrication technology is required to face with the new environments such as the rapid introduction of high wear resistent high speed steel roll the development of continuous hot rolling technology. In the hot strip mill, according to rolling and quality required conditions are constrict, Roll material of hot rolling finishing stand is changing Hi-Cr Roll to High Speed Steel [HSS] Roll. The problem of HSS Roll of roll force and strip scale defects are increasing in hot strip mill, So we have tested HSS Roll in hot rolling simulator as rolling condition, rolling speed, draft, hot oil concentration. To reduce roll force and prevent scale defects. We get some merit rolling force, rolling torque, roll wear reduction, roll and strip surface roughness and hot rolling critical oil concentration 0.4%. Finally we are going to investigate the effect of hot rolling oil of on rolling with HSS Roll.

  • PDF

고속열간압연시 압연조건에 따른 AA5052의 두께방향으로의 변형량 및 미세조직 변화 (Through-Thickness Variation of Strain and Microstructure of AA5052 with Rolling Conditions During High Speed Hot Rolling)

  • 이성희
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.265-269
    • /
    • 2009
  • The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.

열간압연 공정 해석용 시뮬레이터의 개발과 응용(II) (Development of Hot Rolling Process Analysis Simulator and Its Application(II))

  • 이원호;이상룡
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.78-91
    • /
    • 1999
  • The endless hot rolling has been focused as an innovative process technology for increasing the productivity drastically and reducing the imperfection of quality in hot rolled steel strip. To realize it in actual mill, a lots of new facilities such as bar coiler, movable LASER welder and high speed strip shear should be equipped. And also it is necessary to develop the control technique for changing the roll gap and rolling speed during rolling, which is named as Flying Gap and Speed Change control technology. To prevent a strip rupture caused by excessive tension, it is very important to minimize fluctuations in strip thickness and intension during FGSC control. In this paper, the mathematical model for FGSC control algorithm was suggested and dynamic simulation is performed to accertain the effect of suggested control method on fluctuations in strip thickness and tension. For endless hot rolling simulation, a lots of FGSC control situations, for instance - strip thickness change from strip to strip - strip width change from strip to strip - carbon content change from strip to strip are considered.

  • PDF

고속열간압연에서 고속도공구강 봉재의 온도분포 해석 (Temperature Distribution of High Speed Tool Steel Rod During High Speed Hot Rolling Procedure)

  • 정효태;이수연;하태권;정재영
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.150-158
    • /
    • 2008
  • The temperature distribution of high speed tool steel rod has been studied during high speed hot rolling procedures. The tool steel rod shows severe temperature gradient during rolling procedures and the temperature at the center of rod are much higher than that at the surface of rod. This temperature gradient accumulated after every rolling procedure and the center of rolled rod could be remelt in some procedures to cause inside defects. In this study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, have been discussed to prevent the temperature increases at the center of rod.

고속열간압연가공된 AA1050의 두께방향으로의 변형량 및 미세조직 변화 (Through-Thickness Variation of Strain and Microstructure of AA1050 Processed by High Speed Hot Rolling)

  • 이성희
    • 한국재료학회지
    • /
    • 제18권9호
    • /
    • pp.492-496
    • /
    • 2008
  • The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at $510^{\circ}C$, while only recovery occurred in the other regions.

페라이트계 스테인레스강의 STICKING 발생 및 성장기구 (Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel)

  • 진원;최점용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF

Effect of Rolling Speed on the Exit Cross Sectional Shape in Rod Rolling Process

  • Lee, Young-Seog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • A rolling speed dependent spread model is proposed for predicting the exit cross sectional shape in oval-round (or round-oval) pass rod rolling process when the rolling speed is very high. The effect of rolling speed on the exit cross sectional shape is measured by performing a four-pass continuous high speed (${\sim}80m/s$) rod rolling test and is described in terms of the spread correction parameter. The validity of the model is examined by applying it to rod rolling process at POSCO No.3 Rod Mill. The cross sectional shapes of workpiece predicted by the proposed model coupled with the surface profile prediction $method^{6}$ are in good agreement with those obtained experimentally.

고속도강 선.봉재의 중심부 용융현상방지를 위한 압연공정 해석 (Analysis of Wire/Bar Rolling Process of High Speed Steel for Prevention of Center Fusion)

  • 이수연;정효태;하태권;정재영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2007
  • The temperature distribution of high speed tool steel wire/bar during high speed hot rolling procedures has been studied in this study. The tool steels wire/bar show severe temperature gradient during rolling procedures and the temperature of center part much higher than that of the surface. This temperature gradient accumulated after every rolling procedure and the center of rolled wire/bar could be remelt in a certain stage to cause inside defects. In the present study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, has been discussed to prevent the temperature increases of center wire/bar.

  • PDF

압연롤 토크를 이용한 열연박판 마무리압연 선진율 예측 정밀도 개선연구 (Development of High Precision Forward Slip Model By Using Roll Torque in Hot Strip Finishing Mill)

  • 문영훈;김영환
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.583-590
    • /
    • 1999
  • New forward slip model has been developed for the precise prediction of rolling speed in the hot strip finishing mill. Besides those influential factors such as neutral point, work roll diameter, friction coefficient, bite angle and the thickness at each side of entry and delivery of the rolls, roll torque was specifically taken into account in this study. To consider the effect of width change on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

강판 열간압연의 기술개발 동향 (Recent Trend in Hot Rolling Technology of Steels)

  • 신수철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.3-9
    • /
    • 1999
  • The recent technical trend in hot rolling of steel can be described as process and product technologies which have been progressed with modern mill equipment and computers. Precise gauge and width control can be achieved by up-to-date control methods such as AGC and AWC systems. Roll benders and various shape control systems enabled high quality flatness and crown control. Mills can produce higher tensile materials by new process based on process metallurgy. The use of high speed steel rolls and on line roll grinders make the schedule free rolling easier which results in cost saving. Process itself goes toward continuous and simple flow type which has lower operation. Endless rolling and strip casting are examples of the trend. Materials with higher tensile strength and various functions have been developed in last years to meet the customer's needs and this trend will continue.

  • PDF