• Title/Summary/Keyword: high-speed Maglev

Search Result 70, Processing Time 0.026 seconds

Influence of track irregularities in high-speed Maglev transportation systems

  • Huang, Jing Yu;Wu, Zhe Wei;Shi, Jin;Gao, Yang;Wang, Dong-Zhou
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.571-582
    • /
    • 2018
  • Track irregularities of high-speed Maglev lines have significant influence on ride comfort. Their adjustment is of key importance in the daily maintenance of these lines. In this study, an adjustment method is proposed and track irregularities analysis is performed. This study considers two modules: an inspection module and a vehicle-guideway coupling vibration analysis module. In the inspection module, an inertial reference method is employed for field-measurements of the Shanghai high-speed Maglev demonstration line. Then, a partial filtering, integration method, resampling method, and designed elliptic filter are employed to analyze the detection data, which reveals the required track irregularities. In the analysis module, a vehicle-guideway interaction model and an electromagnetic interaction model were developed. The influence of the measured line irregularities is considered for the calculations of the electromagnetic force. Numerical integration method was employed for the calculations. Based on the actual field detection results and analysis using the numerical model, a threshold analysis method is developed. Several irregularities modalities with different girder end's deviations were considered in the simulations. The inspection results indicated that long-wavelength irregularities with larger girder end's deviations were the dominant irregularities. In addition, the threshold analysis of the girder end's deviation shows that irregularities that have a deviation amplitude larger than 6 mm and certain modalities (e.g., M- and N-shape) are unfavorable. These types of irregularities should be adjusted during the daily maintenance.

Learning an Application of Superconductivity in Modern Mass Transportation

  • Ping, Jin;Hui, Liu;Li, Wan
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.148-151
    • /
    • 2012
  • Applications of superconducting technology in transportation is more straightforward than others, such as magnetic levitation (maglev) trains. A maglev train is of high speed & low power-consumption, environmental friendly and safe, accompanied by some drawbacks. This article will introduce the application of superconducting technology in the urban mass transport system, and the bottleneck of this application.

Present Status and Development Strategies of Maglev in Korea (자기부상열차(磁氣浮上列車) 기술체계(技術體系)와 개발전략(開發戰略))

  • Yoo, Mun-Hwan;Kim, In-Kun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.102-105
    • /
    • 1991
  • In recognition of the transportation problems of the present and to prepare for the ever increasing demands of the future, government decided to develop the magnetically levitated train domestically and started R&D program office in Korea Institute of Machinery and Metals(KIMM). This office since has established three step by step goals : first to develop a 40 passenger exhibition vehicle for Daejon EXPO'93, second to develop the low to mid-speed maglev system for urban public transportation by 1997 and finally the high speed inter-city maglev train by year 2001. The first two maglev systems will use attractive levitation-LIM driven technologies and these technologies are the ones currently being developed by this office and others. The maglev train system is a product of wide range of technologies from electro-technologies to civil engineering technologies. Some of the technologies are currently available but more have to be developed in the near future and these technologies are owned by or to be developed by various institutions within the science & technology community. The level of the technologies available at the present time are still very rudimentary and their basis are very narrow. Recently we have made a few successes in terms of levitation and propulsion but they are only with small scale modules and results are very qualitative at best. A great deal of development work has yet to be done to refine the technologies and to gain confidence. Full scale levitation/propulsion modules will be tested on the curved guideway within 6 months by this office and another institution. This paper reviews the current status of the maglev technologies in Korea and discuss the development strategies. The Korean maglev program is very ambitious and the schedule is even more so. A steady financial support and strong system engineering and integration are essential to the success of this program.

  • PDF

Characteristic Analysis of a Linear Induction Motor for 200-km/h Maglev

  • Jeong, Jae-Hoon;Lim, Jae-Won;Park, Do-Young;Choi, Jang-Young;Jang, Seok-Myeong
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • As a result of the current population concentrations in urban centers, demand for intercity transportation is increasing rapidly. Railway transportation is becoming popular as an intercity transportation because of its timely service, travel speeds and transport efficiency. Among the many railway systems, the innovative and environmentally friendly maglev system has been rated very highly as the next-generation intercity railway system. Linear induction motors are widely used for the propulsion of maglev trains because of their light weight and low construction costs. The urban maglev that was recently completed in Incheon airport site employs a 110km/h class linear induction motor. However, this system was designed to meet requirements for inner-city operations and is not suitable as an intercity transportation system, which requires medium to high speeds. Therefore, this study deals with the characteristics and designs of linear induction motors used for the propulsion of maglev trains that can be used as intercity trains. Rail car specifications for high-speed trains have been presented, and the characteristics of linear induction motors that can be used for the propulsion of these trains have been derived using the finite element method (FEM).

Repulsive force analysis of a new maglev scheme with an AC superconducting magnet (교류용 초전도자석을 이용한 새로운 자기부상시스템의 반발력 해석)

  • 김동훈;이지황;차귀수;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.18-23
    • /
    • 1996
  • This paper proposes a new levitation scheme for EDS MAGLEV vehicle with AC superconducting magnet(ACSCM). The eddy current and the levitation force are generated at all speed including stand still in this scheme, therefore, the auxiliary wheels on DCSCM can be eliminated. To reduce the ac loss of the magnet, the ACSCM also can be operated as a DCASCM at high speed because levitation force generated by DCSCM is enough at high speed. To prove the effectiveness of the proposed scheme, the repulsive force and power loss versus frequency of ACSCM is calculated. For comparison, characteristics of DCSCM of same cross section versus speed are also given. (author). 6 refs., 9 figs.

  • PDF

Characteritic Analysis of Hybrid Levitation and Propulsion System for Super-Speed Maglev (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 특성 해석)

  • Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.623_624
    • /
    • 2009
  • This paper deals with the characteristic analysis of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several machine characteristics such as levitation force with/without control current and thrust are described. In order to verify the analysis results and feasibility of high-speed operation of the maglev vehicle, real-scale static test set is implemented and tested.

  • PDF

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.

New control strategy of propulsion system for the Transit Maglev System (자기부상열차용 추진제어장치의 새로운 제어기법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • The traction drive system for the urban transit maglev system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the proposed traction drive system is verified by the MATLAB simulation results.

Development of propulsion system for the Urban Transit Maglev System (도시형 자기부상열차 적용을 위한 추진제어장치의 개발)

  • Lee Eun Kyu;Kim Hyung Chul;Song Young Sin;Choi Jae Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.86-90
    • /
    • 2002
  • In this paper, traction system for urban transit maglev system is proposed. Using vector control strategy to control magnitude and frequency of output voltage transiently is general. But in case of traction system for railway vehicle, it is impossible that adapt vector control because there is one-pulse mode in a high speed region. So this paper proposes the control strategy using vector control in a low speed region and slip frequency control in a high speed region. And also proposes overmodulation method that makesto change in one-pulse mode softly. The performance of traction system will be verified by simulation results using ACSL.

  • PDF