• Title/Summary/Keyword: high-resolution imagery

Search Result 458, Processing Time 0.027 seconds

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

APPLICATION OF HIGH RESOLUTION SATELLITE IMAGERY ON X3D-BASED SEMANTIC WEB USING SMART GRAPHICS

  • Kim, Hak-Hoon;Lee, Kiwon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.586-589
    • /
    • 2006
  • High resolution satellite imagery is regarded as one of the important data sets to engineering application, as well as conventional scientific application. However, despite this general view, there are a few target applications using this information. In this study, the possibility for the future wide uses in associated with smart graphics of this information is investigated. The concept of smart graphics can be termed intelligent graphics with XML-based structure and knowledge related to semantic web, which is a useful component for the data dissemination framework model in a multi-layered web-based application. In the first step in this study, high resolution imagery is transformed to GML (Geographic Markup Language)-based structure with attribute schema and geo-references. In the second, this information is linked with GIS data sets, and this fused data set is represented in the X3D (eXtensible 3D), ISO-based web 3D graphic standard, with styling attributes, in the next stop. The main advantages of this approach using GML and X3D are the flourished representations of a source data according to user/clients’ needs and structured 3D visualization linked with other XML-based application. As for the demonstration of this scheme, 3D urban modelling case with actual data sets is presented.

  • PDF

DESIGN AND IMPLEMENTATION OF 3D TERRAIN RENDERING SYSTEM ON MOBILE ENVIRONMENT USING HIGH RESOLUTION SATELLITE IMAGERY

  • Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.417-420
    • /
    • 2006
  • In these days, mobile application dealing with information contents on mobile or handheld devices such as mobile communicator, PDA or WAP device face the most important industrial needs. The motivation of this study is the design and implementation of mobile application using high resolution satellite imagery, large-sized image data set. Although major advantages of mobile devices are portability and mobility to users, limited system resources such as small-sized memory, slow CPU, low power and small screen size are the main obstacles to developers who should handle a large volume of geo-based 3D model. Related to this, the previous works have been concentrated on GIS-based location awareness services on mobile; however, the mobile 3D terrain model, which aims at this study, with the source data of DEM (Digital Elevation Model) and high resolution satellite imagery is not considered yet, in the other mobile systems. The main functions of 3D graphic processing or pixel pipeline in this prototype are implemented with OpenGL|ES (Embedded System) standard API (Application Programming Interface) released by Khronos group. In the developing stage, experiments to investigate optimal operation environment and good performance are carried out: TIN-based vertex generation with regular elevation data, image tiling, and image-vertex texturing, text processing of Unicode type and ASCII type.

  • PDF

Development of Feature-based Classification Software for High Resolution Satellite Imagery (고해상도 위성영상의 분류를 위한 형상 기반 분류 소프트웨어 개발)

  • Jeong, Soo;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.53-59
    • /
    • 2004
  • In this paper, we investigated a method for feature-based classification to develop a software which is suitable for the classification of high resolution satellite imagery. We developed algorithms for image segmentation and fuzzy-based classification required for feature-based classification and designed user interfaces to support interaction with user, considering various elements required for the feature-based classification. Evaluation of the software was accomplished using real image. Classification results were compared and analysed with eCognition software which is unique commercial software for feature-based classification. The classification results from both softwares showed essentially same results and the developed software showed better result in the processing speed.

  • PDF

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF

Classification of Forest Type Using High Resolution Imagery of Satellite IKONOS (고해상도 IKONOS 위성영상을 이용한 임상분류)

  • 정기현;이우균;이준학;김권혁;이승호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2001
  • This study was carried out to evaluate high resolution satellite imagery of IKONOS for classifying the land cover, especially forest type. The IKONOS imagery of 11km$\times$11km size was taken on April 24, 2000 in Bong-pyoung Myun Pyungchang-Gun, Kangwon Province. Land cover classes were water, coniferous evergreen, Larix leptolepis, broad-leaved tree, bare land, farm land, grassland, sandy soil and asphalted area. Supervised classification method with algorithm of maximum likelihood was applied for classification. The terrestrial survey was also carried out to collect the reference data in this area. The accuracy of the classification was analyzed with the items of overall accuracy, producer's accuracy, user's accuracy and k for test area through the error matrix. In the accuracy analysis of the test area, overall accuracy was 94.3%, producer's accuracy was 77.0-99.9%, user's accuracy was 71.9-100% and k and 0.93. Classes of bare land, sandy soil and farm land were less clear than other classes, whereas classification result of IKONOS in forest area showed higher performance than that of other resolution(5-30m) satellite data.

DESIGN OF STANDARD GRIDDED METADATA FOR INTEGRATED MANAGEMENT OF SATELLITE IMAGERY INFORMATION

  • Han, Eun, Young;Chae, Gee-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.286-289
    • /
    • 2005
  • Recently, in Korea, recognizing the importance of satellite imagery and a national project, the development of satellite providing satellite imagery information of 1m high resolution has been carried out. As the application of satellite. imagery information is expanded to the national land, the environment and geographical information, etc, the necessity of integrated management of satellite imagery information increases. Unfortunately, in case of Korea, currently, the results that institutes for satellite imagery processing produce with satellite imagery have been individually managed. Integrated Management of Satellite Imagery Information project which is being promoted by ETRI (Electronics and Telecommunication Research Institute) in Korea will provide the solutions for the above mentioned problems. In this research work, we designed standard metadata for integrated management of satellite imagery information in consideration of international and national standard.

  • PDF

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.7-14
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

  • PDF

GEOSTATISTICAL UNCERTAINTY ANALYSIS IN SEDIMENT GRAIN SIZE MAPPING WITH HIGH-RESOLUTION REMOTE SENSING IMAGERY

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.225-228
    • /
    • 2007
  • This paper presents a geostatistical methodology to model local uncertainty in spatial estimation of sediment grain size with high-resolution remote sensing imagery. Within a multi-Gaussian framework, the IKONOS imagery is used as local means both to estimate the grain size values and to model local uncertainty at unsample locations. A conditional cumulative distribution function (ccdf) at any locations is defined by mean and variance values which can be estimated by multi-Gaussian kriging with local means. Two ccdf statistics including condition variance and interquartile range are used here as measures of local uncertainty and are compared through a cross validation analysis. In addition to local uncertainty measures, the probabilities of not exceeding or exceeding any grain size value at any locations are retrieved and mapped from the local ccdf models. A case study of Baramarae beach, Korea is carried out to illustrate the potential of geostatistical uncertainty modeling.

  • PDF

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.