• 제목/요약/키워드: high-pier bridge

검색결과 72건 처리시간 0.026초

The Increment Of The Local Scour Depth At Piers By Constructing The Bridge Between Existing Bridges

  • Choi, Gye-Woon;Kim, Gee-Hyoung
    • Water Engineering Research
    • /
    • 제1권2호
    • /
    • pp.159-168
    • /
    • 2000
  • In this paper, the increment of the local scour depth at piers by constructing the bridge between existing bridges is examined through the experiments in which 5 piers in the non-cohesive bed material in the experimental flume were installed. In the experiments the maximum distance of 25 times of the pier length and the maximum distortion width of 8 times of the pier width were utilized. Through the experimental studies, it was indicated that low flow, which can be characterized as the flow having low Froude numbers, the maximum bed configuration change is obtained when the piers are installed in the straight line in the flor direction without any distortion. However, In the high flow, which can be characterized as the flow having high Froude numbers, the maximum bed configuration change is obtained when the piers are installed with some distortion from the flow direction. The influence of the bed configuration by interaction between bridge piers is changed depending upon the Froude numbers, the distance between piers, and the distortion width between adjacent bridge piers. Also, because the scour patterns are affected by the bed configuration, the maximum scour should be increased by about 60% compared to that in a single pier if the interaction between bridge piers exists. It can be suggested that the maximum scour depth at bridge piers predicted by applying the existing equations should be increased if the interaction between bridge piers exist. Those cases are found when new bridges are constructed successively in the river in the urban area.

  • PDF

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • 제27권1호
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Rational analysis model and seismic behaviour of tall bridge piers

  • Li, Jianzhong;Guan, Zhongguo;Liang, Zhiyao
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.131-140
    • /
    • 2014
  • This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

경전철 교각의 미관개선유형별 이미지 및 시각적 선호도 분석 (An Analysis of the Image and Visual Preference of a Light Rail Pier according to Aesthetic Styles)

  • 정성관;강동현;신재윤
    • 한국조경학회지
    • /
    • 제43권4호
    • /
    • pp.15-26
    • /
    • 2015
  • 본 연구는 대구도시철도 3호선의 교각미관개선 시험구간을 대상으로 경관 개선을 위한 방안을 제안하고자 하였다. 연구방법은 교각에 대한 인식과 디자인 시 중요요소를 조사하고, 코팅, 그래픽, 피복식물, 광고판 등의 선호도 및 감성평가를 실시하였다. 경전철의 교각은 평가자들의 60.4%가 부정적으로 인식하고 있으며, 미관개선이 필요한 것으로 조사되었다. 교각디자인 시 고려해야할 시각적 요소는 색채 5.81, 형태 5.57, 미적구성 요소에는 조화 6.07, 쾌적성 6.00 등의 순서로 높게 나타났다. 미관개선별 선호도는 그래픽 4.14, 피복식물 3.57, 코팅 3.23, 광고판 2.82 등의 순서로 분석되었으나, 연구대상지 피복식물은 생육이 나빠 피복율이 낮은 상태에서 이루어진 점을 고려해야 할 것으로 판단된다. 감성평가에서 코팅, 안전시설, 무처리는 '인공적인', '생기없는', '삭막한'이 대표적인 경향으로 나타났고, 자연재료를 사용한 피복식물은 타 유형에 비해 '자연적인', '생기있는'이 높은 것으로 분석되었다. 반면, 그래픽과 광고판은 대표적인 감성 요소 없이 디자인에 따라 상이한 것으로 나타났다. 교각 미관개선을 위해서는 우선적으로 주변 환경과 조화로움, 이용자의 정감성을 고려할 필요가 있으며, 본 연구의 결과는 경전철 교각의 경관문제 개선에 필요한 기초자료로 활용할 수 있을 것으로 기대된다.

Reliability considerations in bridge pier scouring

  • Muzzammil, M.;Siddiqui, N.A.;Siddiqui, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.1-18
    • /
    • 2008
  • The conventional design of bridge piers against scour uses scour equations which involve number of uncertain flow, sediments and structural parameters. The inherent high uncertainties in these parameters suggest that the reliability of piers must be assessed to ensure desirable safety of bridges against scour. In the present study, a procedure for the reliability assessment of bridge piers, installed in main and flood channels, against scour has been presented. To study the influence of various random variables on piers' reliability sensitivity analysis has been carried out. To incorporate the reliability in the evaluation of safety factor, a simplified relationship between safety factor and reliability index has been proposed. Effects of clear water (flood channel) and live bed scour (main channel) are highlighted on pier reliability. In addition to these, an attempt has also been made to explain the failure of Black mount bridge of New Zealand based on its pier's reliability analysis. Some parametric studies have also been included to obtain the results of practical interest.

대규모 단층대를 통과하는 교량설계를 위한 물리탐사의 활용 (Application of Geophysical Results to Designing Bridge over Large Fault)

  • 정호준;김정호;박근필;최호식;김기석;김종수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.245-248
    • /
    • 2001
  • During the core drilling for the design of a railway bridge crossing over the inferred fault system along the river, fracture zone, extends vertically more than the bottom of borehole, filled with fault gouge was found. The safety of bridge could be threatened by the excessive subsidence or the reduced bearing capacity of bedrock, if a fault would be developed under or around the pier foundation. Thus, a close examination of the fault was required to rearrange pier locations away from the fault or to select a reinforcement method if necessary. Geophysical methods, seismic reflection method and electrical resistivity survey over the water covered area, were applied to delineate the weak zone associated with the fault system. The results of geophysical survey clearly showed a number of faults extending vertically more than 50m. Reinforcement was not desirable because of the high cost and the water contamination, etc. The pier locations were thus rearranged based on the results of geophysical surveys to avoid the undesirable situations, and additional core drillings on the rearranged pier locations were carried out. The bedrock conditions at the additional drilling sites turned out to be acceptable for the construction of piers.

  • PDF

Influence of time-varying attenuation effect of damage index on seismic fragility of bridge

  • Yan, Jialei;Liang, Yan;Zhao, Boyang;Qian, Weixin;Chen, Huai
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.287-301
    • /
    • 2020
  • Fragility as one of the most effective methods to evaluate seismic performance, which is greatly affected by damage index. Taking a multi span continuous rigid frame offshore bridge as an example. Based on fragility and reliability theory, considering coupling effect of time-varying durability damage of materials and time-varying attenuation effect of damage index to analyze seismic performance of offshore bridges. Results show that IDA curve considering time-varying damage index is obviously below that without considering; area enclosed by IDA of 1# pier and X-axis under No.1 earthquake considering this effect is 96% of that without considering. Area enclosed by damage index of 1# pier and X-axis under serious damage with considering time-varying damage index is 90% of that without considering in service period. Time-varying damage index has a greater impact on short pier when ground motion intensity is small, while it has a great impact on high pier when the intensity is large. The area enclosed by fragility of bridge system and X-axis under complete destruction considering time-varying damage index is 165% of that without considering when reach designed service life. Therefore, time-varying attenuation effect of damage index has a great impact on seismic performance of bridge in service period.

지진격리장치를 갖는 PSC I형 거더교량의 지진거동 특성 및 경제성 분석 (Seismic Behavior and Economic efficiency Analysis of Bridge for PSC I-Shaped Girder of isolated device)

  • 신영석;박장호;최광수;홍순호
    • 한국전산구조공학회논문집
    • /
    • 제21권2호
    • /
    • pp.145-151
    • /
    • 2008
  • 지금까지의 지진 관련 연구는 주로 교량 받침 자체의 성능개선이 주요 관심 과제였으나, 본 논문에서는 받침 종류에 따라 교량에 미치는 전반적인 지진거동 특성을 분석하고 교량 공사비에 미치는 영향을 검토하였다. 이를 위해 실무에서 많이 적용되는 PSC I형 교량에 대해 교량받침의 종류를 변화시키며 교각 높이를 매개변수로 하여 상시 및 지진해석을 수행하였다. 특히 지진해석을 통해 산출한 단면력을 고려하여 PSC I형 교량받침의 변위, 지진하중에 의한 교각 기둥의 직경, 상부여유 간격 등의 변화를 분석하였다. 고교각인 경우 탄성받침보다는 지진격리장치를 적용하는 것이 지진에 의한 상부구조의 이동량을 줄여 신축이음장치의 규격을 줄일 수 있으므로 차량의 주행성 및 교량의 유지관리 측면에서 바람직 할 것으로 판단되었고, 교량 하부 구조 단면이 축소되어 미관개선 및 경제성 개선의 효과가 있는 것으로 분석되었다. 결국, PSC I형 교량받침 설계시 일률적으로 탄성받침을 적용하는 것보다 정밀한 내진해석을 통해 지진격리장치를 적용하는 것이 구조적정성 측면 및 공사비 측면에서 타당하다는 결론에 도달하였다.