• Title/Summary/Keyword: high-grade limestone

Search Result 37, Processing Time 0.025 seconds

Necessity of Refining Domestic Limestone (국내(國內) 석회석(石灰石)의 품위(品位) 향상(向上) 필요성(必要性))

  • Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.3-22
    • /
    • 2011
  • Until recently, domestic high grade limestone have mainly mined so high grade limestone deposits have reduced. Because of exhaustion of high grade limestone, mine of limestone have moved from ground to deep position, the grade of limestone become lower because the amount of impurities and colored mineral increased as mining position become deeper. This paper was described about grade improvement of limestone to make a high grade limestone and suitable quality of limestone products by analysis of ore genesis and characteristics, supply and demand situation, use patterns and application standards of domestic lime-stone.

An Experimental Study on the Firing Performance and Property of Lime Mortar for Building in Joseon Dynasty (조선시대 조적용 석회의 소성 성능과 모르타르의 물성에 대한 실험 연구)

  • Lee, Sang-Ok;Chung, Kwang-Yong
    • Journal of architectural history
    • /
    • v.25 no.3
    • /
    • pp.37-45
    • /
    • 2016
  • This study was to investigate the firing method of limestone in Joseon Dynasty, and analyze the physical chemical properties of lime mortars in Joseon Dynasty. This study was to manufacture and evaluate the firing experiment and mortar of Limestone by each sort in order to reproduce the traditional lime mortars in Joseon Dynasty, and investigate the behavior to improve physical properties according to the firing method of Limestone. This study has found out that there were screening criteria and standard of appropriate firing temperature about the Limestone in Joseon Dynasty. Accordingly, this study was to improve its strength through various additives and mixture. In particular, in case of Limestone, the black and blue Limestone were preferred, and most of domestic Limestones were low grade Limestone including the clay and took ivory white or blue with low whiteness. This study has shown that the low grade Limestone was mined by the surface mining compared with the high grade Limestone as underground mining method, and could be used because it was easy to mine relatively and there was possibility that Natural Hydraulic Lime(NHL) was used with the traditional lime mortars in Joseon Dynasty.

Optical Characteristics of Eco-friendly In-situ Recycled Paper with Limestone as Filler (석회석을 원료로 사용한 재생용지의 친환경 In-situ Filler로서의 광학적 특성 연구)

  • Lee, Hyun-Jae;Lee, Lown;Kim, Chun-Sik;Nam, Seong-Young;Seo, Yung-Bum;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.132-137
    • /
    • 2014
  • The study was performed with low-grade limestone, which is used to make cement or is disposed of due to its low CaO content. In this study, the optimal condition of limestone with which to manufacture precipitated calcium carbonate (PCC) and limestone in fiber was determined through in-situ reactions. The best firing condition is with slaked lime with rapid cooling after 2 h of firing at $1000^{\circ}C$. In addition, the content of CaO can be increased by sorting the low-grade limestone using a 200 mesh filter, and the optical quality of old newspaper (ONP) was similar when using both low-grade and high-grade limestone. Also, controlling the particle size of PCC is an important factor pertaining to the optical characteristics of paper.

Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone (저품위 석회석 활용을 위한 습식 배연탈황 공정 모델링 연구)

  • Lim, Jonghun;Choi, Yeongryeol;Kim, Geonyeol;Song, Hojun;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.743-748
    • /
    • 2019
  • This study focuses on the simulation of wet flue gas desulfurization process for improving the production of gypsum by the utilization of low-grade limestone. At present, high-grade limestone with a $CaCO_3$ content of 94% is used for producing merchantable gypsum. In modeling process, a lot of reactions are considered to develop model. First, the limestone dissolution is simulated by RSTOIC model. Second, SOx absorption and crystallization is used by RCSTR model. Finally the gypsum is separated by using SEPERATORS model. Modeling steps make it easy to reflect further side reactions and physical disturbances. In optimization condition, constraints are set to 93% purity of gypsum, 94% desulfurization efficiency, and total use of limestone at 3710 kg/hr. Under these constraints, the mass flow of low-grade limestone was maximized. As a result, the maximum blending quantity of low-grade limestone for 2,100 kg of high-grade limestone that satisfies constraints is about 1,610 kg.

Characteristics of Hydraulic Lime using Low-grade Dolomitic Limestone

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.206-214
    • /
    • 2016
  • This study aims to produce dolomitic hydraulic lime (D-NHL) using domestic low grade dolomitic limestone and to determine the effect of adding blast furnace slag (BFS) and gypsum as part of an investigation of the hydration properties of D-NHL to increase the mechanical properties. The main mineral phases of D-NHL as a hydraulic lime binder were $Ca(OH)_2$, $Mg(OH)_2$, $C_2S$, $C_3S$, and MgO residues. $Ca(OH)_2$ transformed into $CaCO_3$ in D-NHL paste over the period of 28 days, but the carbonation of $Mg(OH)_2$ and the hydration of $C_2S$ did not occur until hydration, after 28 days. Through an investigation of the hydration properties of D-NHL pastes mixed with BFS and gypsum, Al-based compounds such as calcium aluminate hydrates ($C_4AH_{13}$) and ettringite were observed at early hydration time. The compressive strength was improved due to the increased quantities of these hydration products. These results show that good performance results from the application of dolomitic hydraulic lime and that a high value product can be made from domestic waste materials.

Characterization of Physical Properties for Mineral Exploration of High-grade Limestone in Pungchon Formation (풍촌층 고품위 석회석 광상 탐사를 위한 암석 물성 특성)

  • Shin, Seung Wook;Park, Samgyu;Cho, Seoung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • High-grade limestone applied to various chemical industries is abundant within upper Pungchon formation in Taebaeksan basin, South Korea. Geophysical exploration is one of the most efficient methods to investigate subsurface geological structure in an extensive area. Since the geophysical exploration for the high-grade limestone has rarely been conducted in Korea, its appropriate strategy has not been set up yet. In this study, we focused on to suggest the reasonable strategy and accumulate geophysical databases which are essential for interpreting geophysical images by characterizing laboratory physical properties of in-situ rocks. Hence, rocks were obtained from drilled cores consisting of lower Hwajeol formation, Pungchon formation, and dykes in Jeongseon area, Gangwon province. Geophysical laboratory experiments and petrography of the rocks were conducted. Since susceptibility values of the rocks in Pungchon Formation were obviously lower than those of upper Hwajeol and dykes, it is considered that the lithological boundaries could be distinguished by magnetic survey. In addition, electrical properties of the rocks in middle Pungchon formation were relatively different compared with those of upper/lower Pungchon formations. Thus, induced polarization is shown to be able to detect the high-grade limestone in upper Pungchon formation.

Report on the Sam Han Chang Gun Manganese Deposits (삼한(三韓) 장군(將軍) 광산(鑛山) 조사(調査) 보문(報文))

  • Hwang, In Chon
    • Economic and Environmental Geology
    • /
    • v.1 no.1
    • /
    • pp.9-34
    • /
    • 1968
  • Manganese ore deposits of the Samhan Changgun Properties are located at the valley of west-lope-side of Changgun-bong (1132m) occupied over the Myon border between Sochon-myon and Jaesan-myon Pongwha-gun, Kyongsang-Pukdo. Geology of the more property and it's vicinity consists of Wonnan formation and Yulri formation of pre-Cambrain and Changgun limestone formation, Mica-schist formation, quartizite formation and Jaesan formation (containing coal bearing zone the unknown age. And granites and dykes were intruded into the above formation later. 1. Management deposits is embedded the formation of Janggun limestone especially Contact zone in the contact zone to of Chunyang Granite limestone enclosed by Granite, and Maginal zone of fault line in the limestone. Therefore, Chunyang Granite is Closely related to ore deposit. Pegmatite which is near by ore deposit was intruded before mineralization and it seems to be a channelway of ore solution. The most important ore deposits of property grouped into south deposit, east deposit, east-Gachon deposit, South-Gachon deposit, Durimgok deposit and West deposit, out-crops at several place. Besides these deposits there also are several prospects on outcrop scathered. Hydrothermal alteration take place strongly in the well rock and it's sequence are Characterized as following; 1) Dolomitization 2) Carbonization 3) Mamgamotozation 4) Pyritization 5) Silicification 6) Oxidation 2. The grade of manganese dioxide is up to Mn 45% in Maximum, but generally, averaging Mn 30~35% of high grade ore and averaging Mn 30~32% of manganese carbonates are mined in his property.

  • PDF

Characteristics of Various Grade Limestones in Samtaesan Formation (삼태산층 석회석의 품위별 특성에 관한 연구)

  • Choi, Long;Ahn, Young-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.262-268
    • /
    • 1981
  • Experimental investigation has been carried out to study the characteristics of the various grade limestones in Samtaesan formation with the fundamental test (mineral compostion, thermal decomposition and etc.) and intrinsic reactivity test. It was shown that belite formation in low grade limestones is faster than high grade limestone, but alite formation has a contrary.

  • PDF

Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone (풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조)

  • Lee, Jae-Jang;Park, Jong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

A Study of Desulfation Characteristics of Circulating Fluidized Bed Combustion for Domestic Anthracite (국내 무연탄의 순환류동층 보일러에서 탈황 특성 연구)

  • 정진도;김장우;하준호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.429-436
    • /
    • 2004
  • Circulating fluidized bed combustion (hereafter CFBC) technology enables an efficient combustion for the materials with low heating values such as high ash coal and sludges. It also has desulfation function by adding limestone directly to combustor. The CFBC has been considered as one of the best processes for low grade coal containing with large contents of ash and sulfur. In this paper, in order to various tests were performed to find the optimum desulfation condition for CFBC using Korean Anthracite. We surveyed possible parameters and conducted desulfation efficiency test in D Thermal Power Plant. In addition, the result of some fundamental theoretical consideration was discussed with CFBC. Optimum limestone size could be considered to be 0.1-0.3mm irrespective of combustion temperature and Ca/S molar ratio variation. Desulfation efficiency increased as the molar ratio increased. Because desulfation process occurs at the surface at higher temperature, inner side of limestone can't be utilized. When surface area is not appropriate, some SO$_2$ emit without reaction. Optimum molar ratio should be decided after considering chemical and physical properties of limestone and coal thoroughly such as particle size, pore size and HGI. Commercial CFBC is operated at Ca/S 1.6. Combustor temperature 840-87$0^{\circ}C$ shows good desulfation efficiency.