• 제목/요약/키워드: high-frequency magnetic properties

검색결과 172건 처리시간 0.012초

Properties and Structure of High Frequency Soft Magnetic Nano-composite Films

  • Ohnuma, Shigehiro;Masumoto, Hiroshi
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.403-407
    • /
    • 2011
  • Metal-insulator type, nano-granular soft magnetic films have been reviewed from the viewpoint of high frequency magnetic materials. The formation of nano-granular structure is related to the magnitude of heat of formation of intergranule materials. Variation of the ratio of granule phase to intergranule phase in the film is found to produce various characteristics in the magnetic properties of the film. The HRTEM observation reveals that neighboring granules in the film with above 60 at.% Co, contact at considerable points and the films show soft magnetic properties which are explainable in terms of the random anisotropy model for nano-crystalline materials. Addition of Ni group elements in Co-O based films enhances their anisotropy field up to 400 Oe and they exhibit excellent frequency response of permeability. Also, large electromagnetic noise suppression effect is demonstrated as one of their potential applications.

High Frequency Soft Magnetic Properties of ($Co_{1-x}Fe_x$)-Al-O Granular Films with High Electrical Resistivity

  • Jaecheon Sohn;Dongjin Byun;Limb, Sang-Ho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.220-221
    • /
    • 2002
  • There has been a demand for higher frequency operation of magnetic devices. Consideration of the materials that could be applicable to such high frequency applications is the first step when designing magnetic thin films for high-frequency use. Materials suitable for high frequency application should have a larger $M_{S}$ and an appropriate anisotropy field ( $H_{K}$), which increase a resonance frequency, and also a larger $\rho$, which reduces eddy current loss. (omitted)ted)

  • PDF

Magnetic and Magnetostrictive Properties of Nanogranular Co-Fe Based Alloys: A Particular Emphasis on High Frequency Applications

  • Sohn, J.C.;Byun, D.J.;Lim, S.H.
    • 한국자기학회지
    • /
    • 제13권4호
    • /
    • pp.133-154
    • /
    • 2003
  • A comprehensive review is given in this article on magnetic and magnetostrictive properties of nanogranular Co-Fe based alloys, with a particular emphasis on high frequency applications. Structural and physical properties are firstly described, followed by magnetic and magnetostrictive properties. Materials of both thin film and bulk forms are considered. A detailed description on high frequency characteristics of Co-Fe based soft magnetic thin films is then presented.

DC-DC Converter용 자성박막 인덕터 설계에 관한 연구 (A Study on Design of Magnetic Thin Film Inductors for DC-DC Converter Applications)

  • 윤의중;김좌연;박노경;김상기;김종대
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The Ni$\sub$81/Fe$\sub$19/ (at%) alloy was selected as a high-frequency($\geq$MHz) magnetic thin film magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of dolenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoftt HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance (Q$\geq$60, L = 1${\mu}$H, efficiency $\geq$90%), high-frequency ($\geq$5MHz), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

A Study on Fabrication of Magnetic Thin Film Inductors for DC-DC Converter

  • Lee, Young-Ae;Kim, Sang-Gi;Do, Seung-Woo;Lee, Yong-Hyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.225-225
    • /
    • 2010
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The $Ni_{81}Fe_{19}$ (at%) alloy was selected as a high-frequency($\geq$ MHz) magnetic thin film core material and deposited on various substrates (bare Si, $SiO_2$ coated Si) using a high vacuum RF magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of solenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoft HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance ($Q{\geq}60$, $L\;=\;1{\mu}H$, efficiency${\geq}90%$), high-frequency (${\geq}5MHz$), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

Magnetic Properties of FeCuNbSiB Nanocrystalline Alloy Powder Cores Using Ball-milled Powder

  • Kim, G. H.;T. H. Noh;Park, G. B.;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.202-203
    • /
    • 2002
  • Ribbon type nanocrystalline alloy cores have shown excellent soft magnetic properties in the high frequency range because of small crystalline anisotropy and nearly zero magnetostriction[1]. In present, however ribbon alloys gives some limit in applications such as a large inductor and reactors of PFC circuit, which are required good DC bias property and low loss in the high frequency. Powder alloys with ultra fine grain structure can be an important way to overcome this kind of disadvantage, and to improve the high frequency soft magnetic properties in conventional metallic powder cores[2]. (omitted)

  • PDF

장력 변화에 따른 Fe-B-Si 비정질 리본의 고주파 자기특성 변화 (High Frequency Magnetic Properties of Tensioned Amorphous Fe-B-Si Ribbon)

  • 김기욱;민복기;송재성;김병걸;황시돌;최형식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1345-1347
    • /
    • 1994
  • High frequency Magnetic Properties of amorphous $Fe_{78}B_{13}Si_9$ ribbon were studied. Squareness ( Br/Bs ) and coercive force ( Hc ) of the specimen field annealed at $380^{\circ}C$ for 2 hrs are changed with the tension and the measuring frequency. So, we could optimise the tension having good magnetic properties at a certain frequency.

  • PDF

$Al_2O_3$조성변화에 따른 YIG의 주파수 및 자기특성 (The frequency and magnetic characteristics of YIG with the variation of $Al_2O_3$ additions)

  • 홍기원;김명호;장경욱;이준웅
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.787-794
    • /
    • 1995
  • To improvement the magnetic and frequency properties of YIG(Yttrium-Iron Garnet) in microwave region, it is investigated that the effect of $Al^{3+}$ ions on magnetic and frequency characteristics of YIG, using samples of basic YIG composition( $Y_{3}$F $e_{5}$ $O_{l2}$) added with A1$_{2}$ $O_{3}$ from 0 to 2.5 [mol%]. The measurment is conducted mainly for the structural properties and magnetical properties. The structural properties is measured using SEM(Scanning Electro Microscope), EDX(Energy-dispersive X-ray spectrometer) and XRD(X-ray diffraction equipment). The magnetical properties is measured with B-H curve tracer and impedance analyzer. As a result, it is confin-ned that the effect of eddy current loss is minimized while maintaining high saturation flux density of YIG, when YIG is added with 0.5 [mol%] of A1$_{2}$ $O_{3}$.>.>.

  • PDF

High Frequency Properties of Patterned Fe-Al-O Thin Films

  • N.D. Ha;Park, B.C.;B.K. Min;Kim, C.G.;Kim, C.O.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.194-194
    • /
    • 2003
  • As a result of the recent miniaturization an enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with high magnetic permeability in the high frequency range, high saturation magnetization, in high electrical resistivity, and low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm and 1 $\mu\textrm{m}$ thickness were deposited on Si wafer, using RF magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2mTorr, O$_2$ partial pressure of 5%, input power of 400W, and Al pellets on an Fe disk with purity of 99,9%. Magnetic properties of the continuous films as followed: the 4$\pi$M$\_$s/ of 19.4kG, H$\_$c/ of 0.6Oe, H$\_$k/ of 6.0Oe and effective permeability of 2500 up to 100㎒ were obtained. In this work, we expect to enhance effect of magnetic anisotropy on patterned of Fe-Al-O thin films.

  • PDF

NFC의 자기 차폐용 Ni-Zn-Co 페라이트 자성체의 고주파 자기특성 (High-frequency Magnetic Properties of Ni-Zn-Co Ferrites Used for Mangetic Shielding in NFC)

  • 류요한;김성수
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.429-433
    • /
    • 2014
  • This study investigated the magnetic properties and frequency dispersion of complex permeability of Ni-Zn-Co ferrites used for magnetic shielding in near field communication (NFC) system. The sintered specimens of $(Ni_{0.7}Zn_{0.3})_{1-x}Co_xFe_2O_4$ composition were prepared by the conventional ceramic processing. The coercive force and saturation magnetization were measured by vibrating sample magnetometer. The complex permeability was measured by RF impedance analyzer in the range of 1 MHz~1.8 GHz. The coercive force increased and saturation magnetization decreased with increasing the Co substitution. The real and imaginary parts of complex permeability decreased and the resonance frequency increased with Co substitution, which was attributed to the increase in crystal anisotropy field and reduction in saturation magnetization. The effect of Co substitution could be found in reducing the magnetic loss to nearly zero at the operating frequency of NFC (13.56 MHz).