• Title/Summary/Keyword: high-frequency induction heating

Search Result 244, Processing Time 0.032 seconds

Soft Switching High Frequency Inverter for New Induction Heating (새로운 유도가열용 소프트 스위칭 고주파 인버터)

  • Kim, C.Y.;Mun, S.P.;Kim, M.Y.;Kim, H.J.;Lyu, J.Y.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.119-124
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터)

  • Mun, Sang-Pil;Gwon, Sun-Geol;Lee, Jong-Geol;Ju, Seok-Min;Gang, Sin-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.241-243
    • /
    • 2008
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Full)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

Series-resonant High efficiency Induction Heating System following Resonant Frequency (공진주파수 추종 직렬공진형 고효율 유도.가열장치에 관한 연구)

  • 성병기;박성준;김광태;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.124-128
    • /
    • 1999
  • The object of the present study is to obtain a 20[kHz], 10[kW] rating, high efficiency induction heating system by high frequency serises-resonant inverter. Proposed is a topology that minimize a reactive power, by which direct iOIrt voltage is variable corresponding to the variation of the load, heated-object, and by which the switching of inverter is forced to follow a resonant frequency. And assured that the power foctor of the inverter in a induction heating system is proper about O.96 through the simulation and results.esults.

  • PDF

The Development of High-frequency Induction Heating with 1800kW Power (1800kW급 고주파 유도가열장치의 개발)

  • Lee, G.S.;An, I.M.;Lee, Y.H.;Kim, Y.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2064-2066
    • /
    • 1998
  • The development of the high-frequency induction-heating for 1800kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system and auto-interface etc.

  • PDF

Simulation of High-Frequency Induction-Heating Application Power Supply at 2700kW Power (2700kW급 고주파 유도가열장치의 전원시스템 시뮬레이션)

  • Lee, K.S.;Koh, H.S.;Lee, Y.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.189-191
    • /
    • 1998
  • The development of the high- frequency induction-heating for 2700kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system and auto-interface etc.

  • PDF

A study on Heat Flux of Induction Heating of steel plate using the Taguchi Method (다구찌법을 이용한 유도가열 강판의 입열량에 관한 연구)

  • 이윤창;장상균;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.671-674
    • /
    • 2002
  • Induction heating is a process with magnetic and thermal situation. Induction heating of flat metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. When the high frequency electric current flows in a coil, the process parameters which are air gap, power density, and heating time have a important roles on induction heating of steel plate. This study investigates an influence of the process parameters by means of experiments using Taguchi method.

  • PDF

Reheating of Semi-Solid Material Using Multi-Capacity Induction Heating System (다출력 유도 가열 시스템에 의한 반용융 소재의 재가열)

  • 정홍규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.199-202
    • /
    • 1999
  • Many processing times for fabricating complex shaped parts by near net shape process such as thixoforming or semi-solid forming, are required due to the time for die design, induction heating and forming process. Therefore, for the thixoforming process, multi-capacity induction heating process is very important due to the reduction of the processing time and cost. It is indispensable to adopt a power-time heating pattern which manages to conciliate complete eutectic melting at the core with limited overheating at the periphery. The total reheating time is thus dependent on billet diameter; in inches$(pm20%)$. Typically, high frequency is used for the rapid reheating of the billet to the eutectic temperature range and low frequency for the remelting of the desired fraction of liquid and for the radial homogeneization of the liquid fraction. So in this study, the multi-capacity induction heating conditions of ALTHIX 86s alloy to reduce the processing time and cost would be proposed. The suitability of multi-capacity induction heating conditions would be verified through the comparison to Garat's data.

  • PDF

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

Investigation of Weldline Strength with Various Heating Conditions (국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰)

  • Park, Keun;Sohn, Dong-Hwi;Seo, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.