• Title/Summary/Keyword: high-frequency force balance technique

Search Result 8, Processing Time 0.026 seconds

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

Experimental test on bridge jointed twin-towered buildings to stochastic wind loads

  • Ni, Z.H.;He, C.K.;Xie, Z.N.;Shi, B.Q.;Chen, D.J.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • This paper presents results of a study on wind loads and wind induced dynamic response of bridge jointed twin-towered buildings. Utilizing the high-frequency force balance technique, the drag and moment coefficients measured in wind tunnel tests, and the maximum acceleration rms values on the top floor of towers, are analyzed to examine the influence of building's plan shapes and of intervals between towers. The alongwind, acrosswind and torsional modal force spectra are investigated for generic bridge jointed twin-towered building models which cover twin squares, twin rhombuses, twin triangles, twin triangles with sharp corners cut off, twin rectangles and individual rectangle with the same outline aspect ratio as the twin rectangles. The analysis of the statistical correlation among three components of the aerodynamic force corroborated that the correlation between acrosswind and torsional forces is significant for bridge jointed twin-towered buildings.

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

Aerodynamic force characteristics and galloping analysis of iced bundled conductors

  • Lou, Wenjuan;Lv, Jiang;Huang, M.F.;Yang, Lun;Yan, Dong
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.135-154
    • /
    • 2014
  • Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

Experimental study on wind-induced dynamic interference effects between two tall buildings

  • Huang, Peng;Gu, Ming
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.147-161
    • /
    • 2005
  • Two identical tall building models with square cross-sections are experimentally studied in a wind tunnel with high-frequency-force-balance (HFFB) technique to investigate the interference effects on wind loads and dynamic responses of the interfered building. Another wind tunnel test, in which the interfered model is an aeroelastic one, is also carried out to further study the interference effects. The results from the two kinds of tests are compared with each other. Then the influences of turbulence in oncoming wind on dynamic interference factors are analyzed. At last the artificial neural networks method is used to deal with the experimental data and the along-wind and across-wind dynamic interference factor $IF_{dx}$ & $IF_{dy}$ contour maps are obtained, which could be used as references for wind load codes of buildings.

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Mean wind loads on T-shaped angle transmission towers

  • Guohui Shen;Kanghui Han;Baoheng Li;Jianfeng Yao
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.367-379
    • /
    • 2024
  • Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.

Seismic vulnerability assessment of a historical building in Tunisia

  • El-Borgi, S.;Choura, S.;Neifar, M.;Smaoui, H.;Majdoub, M.S.;Cherif, D.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 2008
  • A methodology for the seismic vulnerability assessment of historical monuments is presented in this paper. The ongoing work has been conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The case study is the five-century-old Zaouia of Sidi Kassem Djilizi, located downtown Tunis, the capital of Tunisia. Ambient vibration tests were conducted on the case study using a number of force-balance accelerometers placed at selected locations. The Enhanced Frequency Domain Decomposition (EFDD) technique was applied to extract the dynamic characteristics of the monument. A 3-D finite element model was developed and updated to obtain reasonable correlation between experimental and numerical modal properties. The set of parameters selected for the updating consists of the modulus of elasticity in each wall element of the finite element model. Seismic vulnerability assessment of the case study was carried out via three-dimensional time-history dynamic analyses of the structure. Dynamic stresses were computed and damage was evaluated according to a masonry specific plane failure criterion. Statistics on the occurrence, location and type of failure provide a general view for the probable damage level and mode. Results indicate a high vulnerability that confirms the need for intervention and retrofit.