• 제목/요약/키워드: high-frequency current

검색결과 2,424건 처리시간 0.024초

소음 특수건강진단 자료를 이용한 순음청력검사 평가 (Evaluation of Puretone Threshold Using Periodic Health Examination Data on Noise-exposed Workers in Korea)

  • 김양호;최정근;박정선;문영한;김규상
    • Journal of Preventive Medicine and Public Health
    • /
    • 제32권1호
    • /
    • pp.30-39
    • /
    • 1999
  • 이 연구는 특수건강진단기관의 소음성 난청 진단결과의 유소견자$(D_1)$와 요관찰자(C)를 하나의 평가 지표로 설정하여, 첫째 소음 특수건강진단 결과 소음성 난청의 실태 파악, 둘째 소음성 난청 요관찰 자의 청력장애 평가, 셋째 정력장애 정도 에 따른 각 주파수 영역별 기도순음청력 검사 결과를 통해 청력손실의 정도를 파악하고 이의 판정기준에 따른 진단의 적정성을 검토하고자 하였다. 1. 1994년 l월부터 12월까지의 73개 특수건강진단기관의 특수건강진단 실시 사업장은 27,347개이며 이중 소음 특수 건강진단 설시 사업장은 16,388개(59.9%)이었으며, 전체 특수건강진단 수진 근로자는 731,029명이며 이중 소음 특수 건강진단 수진 근로자는 343,457명 (47.0%)이었다. 소음성 난청 요관찰자는 38,058명, 소음성 난청 유소견자는 1,358 명으로 소음성 난청 요관찰률은 11.1%, 유소견율은 0.44%이었다. 지역에 따라 소음성 난청 요관찰률의 차이를 보여주며 판정기준의 적용에 따른 기도순음 청력평균손실치가 일부 적정하게 판단되지 못하였음을 보여 주었다. 2. ISO 기준의 3분법에 의한 청력 평가시 97%가 경도난청 이하였으며, 회화음 역에서의 4분법에 비해 거의 비슷하였으나 약간 정상역이 많았고, 고음역을 포함하여 평가하는 4분법과 6분법의 적용시 정상자의 경도난청으로의 가능성이 높다고 볼 수 있어 청력평가시 평가방법의 적용에 따라 내재적인 판별능의 차이를 보여준다고 볼 수 있다. 3. 우측귀의 청력역치를 ISO 기준에 의해 평가한 후 양귀의 청력역치의 분포 및 차이를 보면, 우측귀의 평균역치(표준편차)가 20.54(9.56) dB, 좌측귀의 평균역치가 20.54(9.57) dB로 좌측귀의 평균역치가 우측보다 높았다. 양귀의 청력이 75.4%에서 정상역이었으며, 21,562명 (90.6%)의 양귀 청력역치 차이의 범위가 10dB이내였다. 4. 소음성 난청 요관찰자의 회화음역에 속하는 500, 1,000 및 2,000 Hz에서의 기도청력역치를 산술평균으로 하여 구하는 3분법의 청력손실도(표준편차)를 주파수 별로 보면, 우측귀에서 500 Hz 21.08(10.23), 1,000 Hz 18.44(10.01), 2,000 Hz 22.09(13.46), 4,000 Hz 52.36(16.38) dB이었다. 평균청력손실도를 10 dB 간격으로 구분한 후 각각의 주파수별 청력역치를 살펴보면, 정상역인 20 dB미만에서 고음역인 4,000 Hz에서 회화음역인 500, 1,000 및 2,000 Hz에서 보다 평균 30-40 dB 이상의 역치를 보이는 $C_5-dip$ 현상을 특징적으로 보였다. 평균정력손질이 증가함에 따라 4,000 Hz에서의 역치 증가 현상이 점차적으로 감소하다 평균청력손실이 50 dB 이상에서는 10dB 내외의 차이만을 나타내었다. 이상과 같이 소음성 난청 요관찰자에 대한 분석에서 소음성 난청의 평가방법 에 따른 실태와 의미, 소음에 의한 조기청력손실의 특정과 소음성 난청의 판정기준에 따른 진단의 적정성을 확인할 수 있었으며, 소음성 난청 요관찰자에 대한 관리의 필요성을 제언할 수 있겠다.

  • PDF

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근 (A Folksonomy Ranking Framework: A Semantic Graph-based Approach)

  • 박현정;노상규
    • Asia pacific journal of information systems
    • /
    • 제21권2호
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

편액과 시문으로 본 요월정원림(邀月亭園林)의 입지 및 조영 해석 (The Location and Landscape Composition of Yowol-pavilion Garden Interpreted from Tablet & Poetry)

  • 이현우;김상욱;임근홍
    • 한국전통조경학회지
    • /
    • 제32권3호
    • /
    • pp.32-45
    • /
    • 2014
  • 본 연구는 편액과 시문이 과거 누정원림의 고유한 입지 및 조영 특성 추론의 중요한 준거(準據)가 된다는 전제 하에, 요월정원림(邀月亭園林)을 대상으로 과거 시점의 입지 및 조영 해석을 고구(考究)하기 위해 시도되었다. 요월정원림이 갖는 의미와 문화재적 위상과 가치의 진정성 제고 및 보존의 당위성을 논의할 목적으로 시도된 연구결과는 다음과 같다. 첫째, 요월정원림은 정원주 김경우(金景遇)를 비롯한 당대 거유들이 교유한 시율풍류의 현장이었다. "조선환여승람 호남읍지(湖南邑誌) 장성읍지(長城邑誌)" 등 고문헌을 통해 사화(士禍)를 피해 머문 은신처로서의 성격과 함께 지역정체성을 형성한 교두보로서의 장소성이 확인되었다. 또한 "요월정원운(邀月亭原韻)"을 통해 누정원림 작정(作庭) 의도 및 조영 동기를 확인한 바, 요월정원림은 세속과 탈속 그리고 현실과 이상이 뒤섞여 길항(拮抗)한 공간으로 해석된다. 둘째, 당호 요월(邀月)은 누정에서 조망했을 때의 승경적 요인 및 자연현상과 관련된 명칭으로, 마주한 '월봉산에 뜨는 달을 맞이함'을 함의하는 어휘로, 이는 자연의 섭리이자 풍류로서 탈속의 이미지와 맞닿아 있다. 즉 요월정은 세속의 희비를 벗어나 자연의 섭리를 따르려한 조영 의도를 반영한 당호로 해석된다. 셋째, 요월정원림의 입지는 "영광속수여지승람(靈光續修輿地勝覽)"을 통해 조영자가 퇴관 후 휴식을 위해 마련한 처소였으며, 월봉산을 마주하여 황룡강(黃龍江)이 굽이쳐 흐르던 승경지였음을 고문헌과 다수의 시문을 통해 확인하였다. 특히, 수호인 인터뷰에 따르면 요월정원림에서 야경의 시지각 빈도(頻度)는 수호인 거처인 고직사에서 요월정을 향해 황룡강 방향인 동쪽을 숙시각(熟視角)으로 조망했을 때가 가장 높다고 한다. 또한 시지각 강도(强度)가 가장 높고 아름다운 풍경은 요월정 좌측 배후면에서 달이 부상하여 요월정 전면(前面)의 배롱나무동산을 가로질러 요월정과 마주한 월봉산 사이에 남중한 때로 증언한 바 있다. 현재 요월정원림의 좌향은 $SE\;141.2^{\circ}$로서 거의 남동향 하고 있는데, 이와 같은 요월정 좌향 설정은 지형조건뿐 아니라 달의 궤적을 유상(遊賞)하기에 최적화된 방향과 시계(視界)를 확보하기 위한 기도(企圖)가 담겼다고 판단된다. 나아가 전면의 황룡강 수면 위로 남중한 달빛이 투영됨으로써, 하늘의 달과 황룡강 강물에 투영된 달이 동시에 감지되게끔 고려된 것으로 추론된다. 넷째, 현재 요월정원림은 요월정과 광산김씨문숙공파종회각(光山金氏文肅公派宗會閣) 및 고직사(庫直舍)로 구성된 '내원 권역'과 진입부를 아우른 배롱나무동산 및 소나무 배후림이 포함된 '외원 권역'으로 구분된다. 나아가 '용소 및 수생식물원 권역' 및 최근 조성된 '황룡정과 공원 권역'으로 외연(外緣)이 확산되면서 교란되고 변용되었다. 다섯째, 조영 당시 요월정원림은 누정에서 조망한 풍경을 안아 들여 누정을 중심으로 지근거리의 일정한 자연을 점유한 방식인 '경계 없는 산수원림'이었으나, 현재 복합경관은 과거 원형경관과는 괴리된 '이질화 분절화 파편화된' 경관으로 파악된다. 마지막으로, 요월정원림이 문화재지정보호구역임을 감안할 때, 편액과 기문에 묘사된 완전한 원형경관으로의 복원은 아니더라도 최소한 원림권역에서의 경관적 악영향과 시각적 훼손을 최소화하기 위한 대책수립이 요망된다.