• Title/Summary/Keyword: high-fineness cement

Search Result 70, Processing Time 0.021 seconds

An Experimental Study on the Physical Properties of Porous Cement Concrete Using Blast-furnace Slag as an Admixture (고로슬래그를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 과한 실험적 연구)

  • 심종우;채창우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.144-149
    • /
    • 2000
  • Porous cement concrete was developed to prevent hydroplaning of airway pavement or to reduce noise emission in highway. In has been introduced in domestic since early 1980' and applied to a pedestrian road or bike way. The concrete, however, has problems such as lack of optimized mix design, low strength and deterioration, etc. The purpose of this study is to manufacture porous cement concrete using blast-furnace slag to enhance mechanical properties. The results of this study are as follows; the compressive strength range is 102∼247kgf/㎠, the tensile strength range is 16∼70kgf/㎠, the bending strength range is 43∼70kgf/㎠, and the coefficient permeability range is 6.79 ×10-2∼1.17∼10-1cm/sec. To develope high-performance porous concrete, further studies are needed on optimum mixture of fineness modulus and admixture.

  • PDF

Study on the Properties of Field Applied Non-Curing Concrete in Winter Season (동절기 무양생 콘크리트의 현장적용 성능 평가에 관한 연구)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom;Kim, Hyeong-Cheol;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • In the cold-weathering concrete construction, it is important to ensure stable strength development of concrete in a low temperature environment. In this study, Non-curing cement(NCC) using the classified high fineness cement and self-heating powder was investigated for stable strength development without curing in a low temperature environment (less than $0^{\circ}C$). The actual size Mock-Up tests by various cement type and curing condition are performed to evaluate the strength development and hydration heat of concrete.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.

An Experimental Study on the Fludity of High Flowing Concrete according to the Fineness Modulus of Fine Aggregate (세골재의 조립율에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • 박유신;강석표;조성현;최세진;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In the mixing proportion of high flowing concrete we have to use quantity of power such as cement and superplasticizer, and increase the proportion of fine aggregate more than that of plain concrete to increase flowability and segregation resistance. Therefore, the fresh state of high flowing concrete is largely affected by superplasticizer and change of grade the percentage of surface water. This study aims at development of self-filling up high flowing concrete without compaction, in case of using the fine aggregate of standard grade range, by examination on the influence of fresh state of high flowing concrete, and by understanding influence on various fluidity such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

An Experimental Study on the Physical Properties of Porous Cement Concrete Using Polymer as an Admixture (폴리머를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 관한 실험적 연구)

  • 채창우;민병렬;심종우
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.131-139
    • /
    • 2000
  • Porous Concrete usually contains large amount of voids(about 10∼20%) after compaction so that it has relatively high permeability. It has been introduced in domestic since early 1980's but it has problems such as lack of optimized mixture, low strength and durability, and other defects, etc. The purpose of this study is to manufacture high-performance porous concrete using polymer to enhance the mechanical properties. The results of this study are as follows; the compressive strength range 12 92∼207kgf/㎠, the tensile strength range is 14∼28kgf/㎠, the bending stength range is 42∼73kgf/㎠, and the coefficient permeability range is 5.77×10-2∼6.79×10-1cm/sec. To develope high-performance porous concrete. further studies are needed on optimum mixture of fineness modulus and admixture.

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.