• Title/Summary/Keyword: high-axial load

Search Result 446, Processing Time 0.024 seconds

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads (축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가)

  • Han, Jin-Ju;Son, Hong-Jun;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • This study investigated the structural performance of the RC boundary beam-wall system subjected to axial loads that required lesser construction quantity and smaller floor height in comparison with the conventional RC transfer girder system. Four specimens of 1/2 scale were constructed, and their peak strengths under axial loads and failure characteristics were compared and analyzed. Test parameters included the ratio of the lower to the upper wall length, lower wall thickness, and stirrup details of the lower wall. In addition, three-dimensional nonlinear finite element analysis was performed to verify the effectiveness of the boundary beam-wall system. The peak strength of each specimen was similar to the nominal axial strength of the lower wall, indicating that the axial load was transferred smoothly from the upper to the lower wall. The contribution of the lower wall cross-section was high if the ratio of the lower to the upper wall length was small; the contribution was low if the out-of-plane eccentricity existed in the lower wall. The specimen with smaller stirrup distance and cross-ties in the lower wall showed higher initial stiffness and peak load than other specimens.

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.283-294
    • /
    • 2020
  • In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

Test and Analysis of Thermal Ratcheting Deformation for 316L Stainless Steel Cylindrical Structure (316L 스테인리스강 원통 구조물의 열라체팅 변형 시험 및 해석)

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Lee, Jae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.479-486
    • /
    • 2002
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 55$0^{\circ}C$ with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests.

An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.459-465
    • /
    • 2016
  • In this paper, it was performed the fatigue test to examine the effect of cyclic loading for the simple T-joint. Axial force of bolt by clamping and the change of the force by applied load were measured in the joint. And the bolt force, the failure mode and the fatigue strength under cyclic loading were investigated. The parameters of the tension joint were set to be the flange thickness and the diameter of bolt to a different stiffness of the joint in response to the combination. From the fatigue test, failure mode of tensile joints under cyclic loading could be evaluated using a static ultimate load of the specific failure mode in EC3. The fatigue strength of the tension joints was considerably higher than the fatigue strength of the EC3(36) that does not consider a lever action. However, the additional axial force by lever action occurs to an increase in the axial force of the bolt it requires a careful evaluation of the fatigue strength.

Case History Evaluation of Axial Behavior of Micropiles (소구경말뚝의 축방향 거동에 대한 사례 연구)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2004
  • This paper examines the results of full-scale field tests on micropiles and side resistance is evaluated with respect to axial displacements and soil properties. Both cohesive and cohesionless soils are included in this evaluation. For all practical purposes, the developed load-displacement relationship and the geotechnical soil properties for each micropile and soil type can be used to represent the available data well through normalized average values and empirical correlations. There is a significant difference in load-carrying capacity between micropiles and drilled shafts that results primarily from the micropile pressure-grouting installation effects on the state of stress in the ground. The results show that micropiles can have a significant increase of capacity over larger-diameter drilled shafts at shallower depths with D/B < 100 or so. In cohesive soils, the typical increase is on the order of 1.5 with values as high as 2.5. For cohesionless soils, the typical increases are in the range of 1.5 to 2.5 with values as high as 6.

Experimental Study on the Confinement Effect of Headed Cross Tie in RC Column Subjected to Cycling Horizontal Load (철근콘크리트 기둥에서 반복횡력에 대한 헤드형 횡보강근의 구속효과에 대한 실험연구)

  • Seo, Soo Yeon;Ham, Ju Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents an experimental result and suggests the confinement effect of headed cross tie in reinforced concrete(RC) columns subjected to cycling horizontal loads under constant axial load. Five RC columns specimens were manufactured, taking confined type of transverse reinforcement, whether or not using cross tie, end detail of cross tie (hooked or headed), and axial stress in column as major variables, Cyclic horizontal load applied to the columns under constant axial stress and the effect of cross tie to structural capacity of column was evaluated from the test. The column without cross tie failed showing bending deformation of hoop with crack in core concrete at low horizontal load while the column with cross tie showed quite improved strength and ductility by suppressing bending deformation of hoop as well as buckling of longitudinal bar at once even after crack in core concrete. At high lateral displacement, the column with hooked cross tie showed the failure pattern loosing the confining force of cross tie since the $90^{\circ}$ hooked part of cross tie was stretched out and the cracked core concrete lumps were came off. However, the column with headed cross tie showed very stable behavior since the head of cross tie effectively confined the hoop and longitudinal bars even at high lateral displacement.

Influence of high axial compression ratios in RC columns on the seismic response of MRF buildings

  • Sergio Villar-Salinas;Sebastian Pacheco;Julian Carrillo;Francisco Lopez-Almansa
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.51-70
    • /
    • 2024
  • Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations, this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper, these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings, the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength, hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verifications.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

Prediction of Axial Thrust Load under Turbocharger Operating Conditions (운전 상태에서의 터보차저 축 추력 예측)

  • Lee, Inbeom;Hong, Seongki;Kim, Youngchul;Choi, Boklok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.