• Title/Summary/Keyword: high viscosity

Search Result 1,830, Processing Time 0.039 seconds

Rheological Behaviour of Water-in-Oil Emulsions using Quaternium-18 Hectorite (쿼터늄-18 헥토라이트를 사용한 Water-in-Oil 에멀젼의 유변학적 거동)

  • Cho, Wan-Goo;Kim, Byung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • Water-in-Oil (W/O) emulsions are widely used in cosmetics. However, O/W (Oil-in-Water) emulsions are generally superior to W/O emulsions in terms of stability. In this study, we investigated the changes of viscosity, the size of emulsion droplets, and rheological properties of emulsions prepared using distearyldimonium chloride (DDC), magnesium aluminum silicate (MAS) and quaternium-18 hectorite (QH). In addition to the changes of the composition, we tested the condition of homogenization including rotation per minute of the mixer and the mixing time. The viscosity of emulsions with DDC and AMS were not changed with time and the stability of emulsions was stable during the storage time. However, the fluidity of emulsions were low due to the forming gel network in the emulsions. The gelling power of the emulsions with QH was rather weaker than that of the emulsions with DDC and MAS. The viscosity of emulsions with QH was gradually reduced and the phase separation of emulsions with high concentration of oil was observed throughout the storage time, however, the stability of emulsions with DDC, MAS and QH was excellent, the fluidity of emulsions was enhanced, and the viscosity of emulsions was sustained for a long time after setting of emulsions.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Quality Characteristics of Wet Noodles Added with Purple Sweet Potato Powder (자색 고구마 분말 첨가 생면의 품질 특성)

  • Lee, Jae-Sang;Yoo, Seung-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.489-496
    • /
    • 2012
  • This research investigated the quality characteristics and anthocyanin content of wet noodles according to the amount of freeze-dried purple sweet potato powder. For viscosity, initial pasting temperature tended to increase compared to the control group, whereas peak viscosity, peak viscosity time and final viscosity steadily decreased. As the amount of purple sweet potato powder increased, breakdown value of viscosity and set back value significantly decreased. For chromaticity, as the amount of purple sweet potato powder increased, L-value decreased gradually, whereas a-value gradually increased and b-value significantly decreased compared to the control group. Anthocyanin content significantly increased in the addidtive group (91.79) compared to the control group (70.20). Measurement of texture characteristics found that hardness was highest in the control group, but it decreased as the amount of purple sweet potato powder increased. Springiness, gumminess and chewiness were highest in the control group. In the sensory evaluation, color, odor, chewiness, and overall acceptance were high in the 6% addictive group. In this study, by investigating the anthocyanin contents, quality characteristics and sensory attributes of wet noodles with freeze-dried purple sweet potato powder, we found that the 6% additive group is the best. Our results provide basic information for the development of noodles with purple sweet potato powder.

Apparent Viscosity Properties of Electro-Rheological Fluid by Using Rotational Viscometer (회전식 점도계를 이용한 ERF의 겉보기 점도 특성)

  • 장성철;이진우;김태형;박종근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.196-201
    • /
    • 2001
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. Therefore, there are many practical applications using the ER fluids. ER effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of starch based ER fluid were reported. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply, The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to 200s$^{-1}$ in 2 minutes. This thesis presents Bingham properties of ER fluids subjected to temperature variations. The temperature dependence of the viscosity was determined for ER fluids consisting of 35 weight % starch particles in automatic transmission oil.

  • PDF

Simultaneous measurements of red blood cell aggregation and blood viscosity in a slit rheometry with light transmission analysis (광 투사법을 이용한 슬릿 점도계에서의 적혈구 응집성 및 점도 측정에 관한 연구)

  • Park, Myung-Su;Ku, Yun-Hee;Shin, Se-Hyun;Suh, Jang-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1678-1681
    • /
    • 2004
  • The light-transmission technique has been applied to a slit rheometer for measuring red blood cell aggregation as well as blood viscosity over a range of shear rates. For measurement of blood viscosity and aggregation, instantaneous pressure and transmit-light intensity are measured with time. Using a precision pressure measurement, one can determine the shear stress and shear rate. In addition, a transmitted light through a blood sample indicates degree of RBC aggregation. With abruptly flowing with high shear rate, RBCs rapidly disaggregate and the intensity of the transmitted light becomes low. When continuously flowing with decreasing shear rate, RBCs tend to re-aggregate and the corresponding transmit-intensity gradually increases with time. The light intensity as a degree of RBC aggregation is plotted against shear rate and compared with blood viscosity. The advantages of this design are dual measurement at a time, simplicity, i.e., ease of operation and no moving parts, low cost, short operating time, and the disposable kit which is contacted with blood sample.

  • PDF

Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis (고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산)

  • Eom, Hyo-Sang;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.415-423
    • /
    • 2010
  • Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to $C{\simeq}0.14\;g/mL$ in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration $C[{\eta}]$, which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C$[{\eta}]$ >2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C$[{\eta}]$ >2.5.

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

Processing Characteristics of Nylon 6 by Controlling the Melt Viscosity (용융 점도 조절에 의한 나일론6의 가공특성 연구)

  • Kim Hyogap;Kim Jun Kyung;Lim Soonho;Lee Kunwong;Park Min;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.565-570
    • /
    • 2005
  • Melt processing characteristics of nylon 6 (N6) has been investigated by controlling the melt viscosity in melt impregnation process. Calcium stearate (CaST) was introduced as a lubricant for N6 and the melt viscosity of N6 decreased with adding only 1 wt$\%$ of CaST. In addition, reactive blending with polycaprolactone (PCL) was carried out by lowering the melt viscosity in N6. It was found that the melt viscosity of N6 could be controlled and further melt viscosity drop could be obtained by applying phenyl phosphite (PP) and diphenyl phosphite (DPP) to enhance the transesterification between N6 and PCL. Our approaches show that the melt viscosity of N6 could be reduced without loss of thermal stability which is the critical problem in high temperature melt impregnation process of N6.

Studies on the Rheology of the Biopolymer produced by Bacillus sp. K-1 Strain and its Mutants (Bacillus sp. K-1과 그의 변이주가 생산하는 Biopolymer의 물성에 관한 연구)

  • Kim, Sung-Ho;Yim, Moo-Hyun;Choung, Nack-Hyun
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.165-171
    • /
    • 1996
  • The rheological properties of biopolymers produced by Bacillus sp. K-1 and its mutant strains(KM-21, KM-83) were studied. Apparent viscosity of biopolymers decreased as rising the temperature. The biopolymer produced by KM-21 strain showed 1.7 times low viscosity, 2.7 times low viscosity by K-1 and 1.9 times low viscosity by KM-83 at $80^{\circ}C$ compared with at $20^{\circ}C$ respectively. The viscosity of biopolymer solution also increased with increasing the polymer concentration and showed pseudoplastic characteristics which is high temperature dependency in all concentration. The change of the biopolymer viscosity on the pH showed the highest value at the pH 7.0 and it showed lower at acidic condition than at alkaline condition comparatively.

  • PDF

High-impulse, Low-Power Microthruster using Liquid Propellant with High-Viscosity Fluid Plug (저온 비등 팽창유체와 고점성 유체마개를 이용한 고출력 저전력형 마이크로 분사기)

  • Kim, Sang-Wook;Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.868-874
    • /
    • 2002
  • A high-impulse, low-power, digital microthruster has been developed using low-boiling-temperature liquid propellant with high-viscosity fluid plug. The viscous fiction force of the fluid plug increases the blast pressure and the low-boiling-temperature liquid propellant is intended to reduce input power consumption. The three-layer microthruster has been fabricated by surface micromachining as well as bulk micromachining in the size of 7$\times$13$\times$1.5㎣. A digital output impulse bit of 6.4$\times$10$^{-8}$ Nsec has been obtained from the fabricated microthruster using perfluoro normal hexane (FC72) propellant and oil plug, resulting in about ten times increase of the impulse bit using one hundredth electrical input energy compared to the conventional multiple-shot microthruster.