• 제목/요약/키워드: high velocity impact-load

검색결과 58건 처리시간 0.023초

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.

복합적층판의 층간파괴에 미치는 충격하중속도의 효과 (Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates)

  • 최낙삼
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

부유사 확산예측 모형의 신뢰도 평가에 관한 연구 (Reliability Evaluation of the Estimation of Suspended Sediment Dispersion)

  • 탁대호;정연진;전은주;양준용
    • 해양환경안전학회지
    • /
    • 제28권6호
    • /
    • pp.890-898
    • /
    • 2022
  • 해상공사에서 발생하는 부유사는 해수의 탁도를 증가시키고 광량을 감소시켜 해양생물에 악영향을 미치므로 해양환경영향평가에서 중요한 요소이다. 하지만 평가에 적용되는 인자에 대한 공식적인 자료의 부족과 평가자의 능력에 따라 그 영향이 달리 평가되고 있다. 따라서 본 연구에서는 해역이용영향평가센터에서 검토한 3년간(2012-2014)의 매립, 준설, 외곽시설물 설치 등 총 58건 사업에 대한 부유사 확산 평가에 대한 실태를 진단하고 개선방안을 제시하였다. 개선방안 제시를 위해 4가지의 평가지표(격자체계의 적정성, 원단위의 적정성, 대표입경 및 침강속도의 적정성)를 적용하였다. 각 항목별 신뢰도에 평균점수 분석결과, 격자체계는 25점, 원단위는 60점, 대표입경은 34점 그리고 침강속도는 17점으로 평가항목에 대한 개선방안이 필요한 것으로 나타났다. 본 연구에서는 부유사 확산 평가상태에 대한 진단 및 신뢰도 평가 결과를 활용하여 부유사 확산예측에 대한 개선방안을 제안하였다. 먼저, 부유사 발생원단위 및 대표입경별 침강속도에 대한 공신력 있는 값이 가이드라인을 통해 제공해야 한다. 그리고 실무에선 신뢰성 향상을 위해 격자체계의 적정성과 결과의 검증을 철저히 해야 한다.

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

LNG/LNG-FPSO 선박용 컨벤셔널 및 파일럿 타입 밸브의 구조성능평가 (Structural Capability Evaluation of the Conventional and Pilot Type Valves for LNG/LNG-FPSO Ships)

  • 황동욱;김성진;배준호;정성윤;김철
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1331-1339
    • /
    • 2012
  • Safety valve used in LNG/LNG-FPSO ships is a high value valve, and it plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of pipes in LNG piping system under the cryogenic and high-pressure condition when the pressure of the system connected with the LNG storage tank and pipes reaches over the set pressure. The structural stability is required for the inner pressure and thermal load because of the cryogenic and high-pressure condition, and a reliability of the safety valve is necessary for impact and deformation by opening the valve. But, the safety valve, which plays a key role for a safety of the transport and storage system, is depended on imports for over 90%, and in domestic production, the design of the valve is performed on the basis of experiences of the works without quantitative analysis for the inner operation characteristics and structural stability of the valve. In this study, impact velocity is calculated by theoretical analysis for obtaining the structural stability of the guide according to the impact load by opening the valve. The shape of the guide and the diaphragm for satisfying the structural stability are suggested and verified by using a thermal-structural analysis.

FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동 (Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading)

  • 민경환;신현오;류두열;윤영수
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.31-38
    • /
    • 2011
  • 이 연구에서는 FRP와 강섬유로 보강한 콘크리트 시편의 충격하중과 정적하중에서의 거동을 보기 위해 휨 실험과 펀칭 실험을 수행하였다. 1방향 휨 실험과 2방향 펀칭 실험에서 콘크리트 시편은 각각 $50{\times}100{\times}350$ mm와 $50{\times}350{\times}350$ mm의 크기로 제작하였다. 0.75% 혼입률의 강섬유 보강 콘크리트는 2방향 충격하중 및 정적하중에서 높은 저항 성능을 보였다. 일반 콘크리트와 강섬유 보강 콘크리트에서 FRP 보강은 높은 성능 증가를 보였다. 초고성능 콘크리트는 콘크리트 자체가 가지고 있는 높은 인장강도와 인성으로 인해, CFRP로 보강한 경우 강도와 에너지 소산 능력이 크게 증가하지 않았다.

전단하중을 받는 복합재료 다중 노치의 파괴강도 (Strength of composite notches under shear load)

  • 이재광;황병선;박승범;박인서;윤한기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.50-53
    • /
    • 2001
  • An experimental research work for the fracture and notch strength of thick laminates has been performed to develop high quality composite notches for structural use. Thus, the multi-directional laminates are designed and compared to the baseline aluminum. The difference of notch strength caused by manufacturing techniques is also discussed. The notches of selected materials are evaluated by the static test and low-velocity impact test. Failure modes are also observed and assessed. Material design is evaluated by the FEA(finite element analysis) and confirmed by experiments. The successful results are obtained for thick composite notches, which shows higher strength than aluminum notches.

  • PDF

고속 공기압 실린더 내장용 쿠션기구의 특성 비교 (Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders)

  • 김도태;장중걸
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석 (Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing)

  • 이경일;홍완기
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.