• Title/Summary/Keyword: high transfer efficiency

Search Result 900, Processing Time 0.025 seconds

Effect of High Pressure Carbon Dioxide on Inactivation of Leuconostoc sp. (고압 이산화탄소에 의한 Leuconostoc sp.의 살균 효과)

  • Hong, Seok-In;Park, Wan-Soo;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1202-1207
    • /
    • 1997
  • Inactivation of Leuconostoc sp. isolated from kimchi using carbon dioxide under pressure was investigated in terms of operating parameters in order to evaluate its feasibility as a novel nonthermal process. Inactivation rates increased with increasing pressure, temperature and exposure time, but with decreasing working volume. Microbial reduction of 3 log cycles was achieved within 150 min under a $CO_2$ pressure of $60\;kg/cm^2$ at 30^{\circ}C$. It was confirmed that microbial inactivation by the high pressure $CO_2$ was governed essentially by the characteristic of $CO_2$ mass transfer and thus penetration of $CO_2$, into cells was a rate limiting step to determine efficiency of the inactivation process. The experimental results suggested that the high pressure $CO_2$ treatment could be used as one of the effective nonthermal methods for preserving foods.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Drying Characteristics of Osmotically Pre-treated Carrots (삼투처리한 당근의 건조 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1126-1134
    • /
    • 1996
  • The physical characteristics changes of carrots during drying were studied to minimize the quality degradation by applying improved drying process and pretreatment method. Physico-chemical properties of the product were analyzed, and then, drying mechanisms were explained by diffusion coefficients and drying models. In hot air drying process, the drying and rehydration efficiencies were high at low relative humidity and high temperature. Browning degree and specific volume also showed similar trend to drying efficiency. Diffusion coefficient, which describes moisture transfer, was also high at low relative humidity and at high temperature. It was verified using. Arrhenius equation that drying process was influenced by temperature. It was also observed during experiment that temperature changes were more effective in drying than relative humidity changes. Quadratic model was the most fittable in explaining the process. As a result of analyzing the experimental data with respect to the drying time, the contents of carotene and moisture could be modeled as a polynomial. As the air velocity increased, drying performance and rehydration efficiency increased.

  • PDF

Photoactivities of Nanostructured α-Fe2O3 Anodes Prepared by Pulsed Electrodeposition

  • Lee, Mi Gyoung;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.400-405
    • /
    • 2016
  • Ferric oxide (${\alpha}-Fe_2O_3$, hematite) is an n-type semiconductor; due to its narrow band gap ($E_g=2.1eV$), it is a highly attractive and desirable material for use in solar hydrogenation by water oxidation. However, the actual conversion efficiency achieved with $Fe_2O_3$ is considerably lower than the theoretical values because the considerably short diffusion length (2-4 nm) of holes in $Fe_2O_3$ induces excessive charge recombination and low absorption. This is a significant hurdle that must be overcome in order to obtain high solar-to-hydrogen conversion efficiency. In consideration of this, it is thought that elemental doping, which may make it possible to enhance the charge transfer at the interface, will have a marked effect in terms of improving the photoactivities of ${\alpha}-Fe_2O_3$ photoanodes. Herein, we report on the synthesis by pulsed electrodeposition of ${\alpha}-Fe_2O_3$-based anodes; we also report on the resulting photoelectrochemical (PEC) properties. We attempted Ti-doping to enhance the PEC properties of ${\alpha}-Fe_2O_3$ anodes. It is revealed that the photocurrent density of a bare ${\alpha}-Fe_2O_3$ anode can be dramatically changed by controlling the condition of the electrodeposition and the concentration of $TiCl_3$. Under optimum conditions, a modified ${\alpha}-Fe_2O_3$ anode exhibits a maximum photocurrent density of $0.4mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE) under 1.5 G simulated sunlight illumination; this photocurrent density value is about 3 times greater than that of unmodified ${\alpha}-Fe_2O_3$ anodes.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

The Transfer Effect of Media Image presented Graduate Reflex (졸업영상에 나타난 영상의미 전달 효과)

  • Lee, Sung-Bok;Jung, Sun-Young;Jeon, Byeong-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.251-254
    • /
    • 2006
  • The application of reflex media in education has been widely used in the aspects of teaching & learning method, humanitarian education and the culture of school lives. It has been resulted from the generality of the applicable scope within conveying the information, propagation velocity, and the efficiency of the amount of conveyable information through the reflex. To utilize this kind of efficiency of reflex media in producing new graduation culture, I intend to show students the graduate reflex including their 3years' school lives and try to find out its effect from them. And then with this result I have studied the changes of the students behavior in the graduation ceremony. As a result I can notice that the intent of graduation reflex which aims to look back into their past and keep in mind it has been reflected to students. In addition I can ascertain their friendship and love for their school have been lifted while watching the reflex with laugh and cry.

  • PDF

Characterization of Imaging and Physical Properties in Digital Radiography System (디지탈 X-선 촬영시스템의 영상 및 물리적 특성 분석)

  • Kim, Jong-Hyo;Lee, Tae-Soo;Park, Kwang-Suk;Han, Man-Cheong;Lee, Choong-Woong;Min, Byoung-Goo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.112-124
    • /
    • 1989
  • In order to evaluate imaging performance of newly developed digital radiography system which requires scanning time as short as 0.7 sec and patient exposure as low as 3 mR, we have investigated its imaging and physical properties such as sensitivity characteristic, scatter fraction, detective quantum efficiency, modulation transfer function, and contrast detail diagram. The results show that the digital radiography system has linear sensitivity to the incident energy, and superior contrast resolving power with less X-ray exposure than conventional film-screen system. These performances are resulted from excellent scatter rejection capability and high detective quantum efficiency of digital radiography system.

  • PDF

Control of Dimethyl Sulfide Emissions Using Biofiltration

  • Kong, Sei-Hun;Kim, Jo-Chun;Allen, Eric R.;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.819-827
    • /
    • 2002
  • Laboratory scale experiments were conducted to evaluate the performance of a biofilter for eliminating dimethyl sulfide(DMS). A commercial compost/pine bark nugget mixture served as the biofilter material for the experiments. The gas flow rate and DMS concentration entering the filter were varied to study their effect on the biofilter efficiency. The operating parameters, such as the residence time, inlet concentration, pH, water content, and temperature, were all monitored throughout the filter operation. The kinetic dependence of the DMS removal along the column length was also studied to obtain a quantitative description of the DMS elimination. High DMS removal efficiencies(>95%) were obtained using the compost filter material seeded with activated sludge. DMS pollutant loading rates of up to 5.2 and 5.5 g-DMS/m$^3$/hr were effectively handled by the upflow and downflow biofilter columns, respectively. The macrokinetics of the DMS removal were found to be fractional-order diffusion-limited over the 9 to 25 ppm range of inlet concentrations tested. The upflow column had an average macrokinetic coefficient(K$\_$f/) of 0.0789 $\pm$ 0.0178 ppm$\^$$\sfrac{1}{2}$//sec, while the downflow column had an average coefficient of 0.0935 $\pm$ 0.0200 ppm$\^$$\sfrac{1}{2}$//sec. Shorter residence times resulted in a lower mass transfer of the pollutant from the gas phase to the aqueous liquid phase, thereby decreasing the efficiency.

Experimental Investigation on the Effect of Low-Speed Icing Condition to the Surface Roughness Formation (저속 결빙조건이 표면 조도 형성에 미치는 영향에 관한 실험적 연구)

  • Kang, Yu-Eop;Min, Seungin;Kim, Taeseong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • In the field of aircraft icing prediction, surface roughness has been considered as critical factor because it enhances convective heat transfer and changes local collection efficiency. For this significance, experimental studies have been conducted to acquire the quantitative data of the formation process. Meanwhile, these experiments was conducted under low-speed condition due to the measurement difficulties. However, it has not been investigated that how the flow characteristic of low-speed will effects to the surface roughness. Therefore, the present study conducted experiment under low-speed icing condition, and analyzed the relation between surface roughness characteristics and icing condition. As an analysis method, the dominant parameters used in the previous high-speed experiments are employed, and roughness characteristics are compared. The size of roughness element was consistent with the previous known tendency, but not the smooth zone width.