• Title/Summary/Keyword: high toughness steel

Search Result 307, Processing Time 0.021 seconds

Development of Chassis Parts Using High Toughness Micro-alloyed Steel (고인성 비조질강 샤시부품 개발)

  • Lee, Si-Yup;Kim, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

Study on the Strength Characteristics and Flexural Toughness of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 강도특성 및 휨인성에 관한 연구)

  • 김기락;연규석;이윤수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.137-145
    • /
    • 1999
  • The use of steel fiber reinforced to improve the strength and flexural toughness of concrete is well known, but reinforcement of polymer concrete with steel fibers has been hardly reported till now. Polymer concrete has high strength, durability and freeze-thaw resistance than that of cement concrete, but it has disadvantage such as low flexural toughness. In this paper, the strength characteristics and flexural toughness of steel fiber reinforced polymer concrete are investigated experimentally with various steel fiber aspect ratios($\ell$/d), and contents(vol.%). As the result, the flexural and splitting tensile strengths and flexural toughness were increased aspect ratio, and reach the maximums at a aspect ratio of 50. The relationship between the compressive, flexural and splitting tensile strength were high. And the relationship between flexural strength and strain energy was approximately linear.

Effects of microstructure and welding heat input on the toughness of weldable high strength steel weldments (용접구조용 고장력강의 용접부 인성에 미치는 미세 조직과 용접 입열량의 영향)

  • 장웅성;방국수;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • This study was undertaken to evaluate the allowable welding heat input range for high strength steels manufactured by various processes and to compare the weldability of TMCP steel for high heat input welding with that of conventional Ti-added normalized steel. The allowable welding heat input ranges for conventional 50kg/$mm^2$ steel to guarantee D or E grade of ship structural steel were below 150 and 80kJ/cm respectively. Such a limit in welding heat input was closely related with the formation of undesirable microstructures, such as grain boundary ferrite and ferrite side plate in the coarse grain HAZ. In case of 60 and 80kg/$mm^2$ quenched and tempered steels, for securing toughness in weldments over toughness requirements for base metal, each welding heat input had to be restricted below 60 and 40kJ/cm, that was mainly due to coarsened polygonal ferrite in weld metal and lower temperature transformation products in coarse grain HAZ. The TMCP steel could be appropriate as a grade E ship hull steel up to 200kJ/cm, but the Ti-added normalized steel could be applied only below 130kJ/cm under the same rule. This difference was partly owing to whether uniform and fine intragranular ferrite microstructure was well developed in HAZ or not.

  • PDF

A Study on HIGH TEMPERATURE FRACTURE TOUGHNESS of Pressure Vessel Steel SA516 at High Temperature. (압력용기용강의 고온파괴인성에 관한 연구)

  • 박경동;김정호
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.228-231
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{1c}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are operated at high temperature and $J_{1c}$ values are affected by temperature. therefore, the $J_{1c}$ valuse at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{1c}$ tests were performed on SA516 carbon steel plate and test results were analyzed according to ASTM E 813-8, ASTM 1813-89. Safety and integrity are required for reactor pressure vessels vecause pthey are operated in high temperature. there are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness$(J_{1c})$ and $J-\Delta{a}$ of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room Temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ according to unloading compliance method.

  • PDF

Evaluation on High Temperature Fracture toughness of Pressure Vessel SA516/70 Steel (압력용기용 SA516/70강의 고온파괴인성평가)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.99-104
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{lc}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are$J_{lc}$ $J_{lc}$ value at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{lc}$ tests were performed on SA516/70 carbon steel plate and test results were analyzed according to ASTM E 813-87, ASTM E 813-89 and ASTM E 1152-87.safety and integrity are required for reactor pressure vessels because, they are operated in high temperature. There are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness($J_{lc}$) and J-$\Delta$a of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ according to unloading compliance method.

  • PDF

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Evaluation of High Temperature Material Degradation for 12Cr Steel by Electrochemical Polarization Method (전기화학적 분극법을 이용한 12Cr강의 고온 재질열화도 평가)

  • Seo Hyon-Uk;Park Kee-Sung;Yoon Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.965-975
    • /
    • 2006
  • High pressure turbine blades are one of the key components in fossil power plants operated at high temperature. The blade is usually made of 12Cr steel and its operating temperature is above $500^{\circ}C$. Long term service at this temperature causes material degradation accompanied by changes in microstructures and mechanical properties such as strength and toughness. Quantitative assessment of reduction of strength and toughness due to high temperature material degradation is required for residual life assessment of the blade components. Nondestructive technique is preferred. So far most of the research of this kind was conducted with low alloy steels such as carbon steel, 1.25Cr0.5Mo steel or 2.25Cr1Mo steel. High alloy steel was not investigated. In this study one of the high Cr steel, 12Cr steel, was selected for high temperature material degradation. Electrochemical polarization method was employed to measure degradation. Strength reduction of the 12Cr steel was represented by hardness and toughness reduction was represented by change of transition temperature, FATT. Empirical relationships between the electrochemical polarization parameter and significance of material degradation were established. These relationship can be used for assessing the strength and toughness on the aged high pressure blade components indirectly by using the electrochemical method.

Numerical analysis on the welding residual stress and fracture toughness of the heavy thick steel welded joints by welding processes

  • Bang, HanSur;Bang, HeeSeon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • This study examined the welding residual stress and fracture toughness of 78mm thick steel electro gas welding (EGW) and flux cored arc welding (FCAW) welded joints by numerical analyses of the thermal elasto-plastic behavior and fracture toughness(KIC). The residual stress, fracture toughness characteristics and production mechanism on the welded joints were clarified. Moreover, the effects of the welding process (EGW and FCAW) on the welding residual stresses and fracture toughness of welded joints were evaluated. The results showed that the new welding process (EGW) appears to be an effective substitute for the existing welding process (FCAW) in a thick steel plate with high strength.

Fracture Toughness Evaluation for Main Feed Water Valves of Korean Standard Nuclear Power Plant (한국표준원전 주급수 밸브의 파괴인성 평가)

  • Yoon, Ji-Hyun;Hong, Seokmin;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • The fracture toughness of 2.25Cr-1Mo cast steel (SA217-WC9) samples which were taken from the check valves of feed water piping of Korean Standard Nuclear Power Plant(KSNPP) was measured by Master Curve method. The measured $T_0$ reference temperature of SA217-WC9 steel was $-30^{\circ}C$. The obtained $T_0$ was compared to the derived value from Charpy impact test data following to SINTEP procedure. The heat-to-heat variation in fracture toughness of SA217-WC9 steel was observed. It was found that the low toughness of a heat of SA217-WC9 steel was attributed to the coarse MnS inclusion originated by high sulfur content as the results of microanalyses.

Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete (강섬유의 특성이 강섬유보강 콘크리트의 압축 및 휨 인성에 미치는 영향)

  • Lim, Dong-Gyun;Jang, Seok-Joon;Jeong, Gwon-Young;Youn, Da-Ae;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • Effects of tensile strength and aspect ratio of steel fiber on compressive and flexural behavior of steel fiber-reinforced concrete (SFRC) with high- and normal-strength were investigated. Also, this study explores compressive behavior of SFRC with different loading rate. For this purpose, four types of steel fiber were used for SFRC with specified compressive strength of 35 and 60 MPa, respectively. Cylindrical specimens with a diameter of 150 mm and height of 300 mm were made for compression test, and prismatic specimens with a $150{\times}150mm$ cross-section and 450 mm span length were made for flexural test. Test results from compression and flexural tests indicated that the toughness of concrete significant increased with steel fibers. Especially, using steel fiber with high tensile strength and aspect ratio can be lead to performance improvement of high-strength SFRC. In this study, equations are suggested to predict compressive toughness ratio of SFRC from flexural toughness ratio.