• 제목/요약/키워드: high temperature superconducting coil

검색결과 129건 처리시간 0.023초

DC 리액터형 고온초전도한류기의 전력계통 연계를 위한 자기철심리액터의 설계 (Design of the Magnetic Core Reactor for the connection to the Power System of DC Reactor Type High Temperature Superconducting Fault Current Limiter)

  • 임대준;배덕권;김호민;이찬주;윤경용;윤용수;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2002
  • In this paper, the power-linking device connecting the high-Tc super-conducting(HTS) coil to the power system in the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been designed. This design was triggered from the concept that the magnetic energy could be exchanged into the electrical energy each other. Ferromagnetic material is used as the path of magnetic flux. The device mentioned above was named Magnetic Core Reactor(MCR). MCR was designed to minimize the voltage drop caused by copper loss. The current density of the conductor was 1.3 A/mm$^2$ and % voltage drop was 2%.

  • PDF

KSTAR 저온 및 구조 계측 시스템 운전 결과 (Operation result of the Cryogenic and Mechanical Measurement System for KSTAR)

  • 김영옥;추용;요네가와;방은남;이태구;백설희;홍재식;이상일;박갑래;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

고온 초전도체 팬케이크 코일의 퀜치 해석 (Quench Analysis in HTS Pancake Coil)

  • 박차식;안태길;박경우;김도형;차귀수;서정식
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.6-9
    • /
    • 2009
  • The thermal characteristics of quench propagation is a crucial problem for the stability of the superconductor. The objective of this study is to simulate the quench propagation with the variation of disturbance energy in Bi-2223/Ag HTS pancake coil. In this analysis, the temperature-time trace of a point away from heater was calculated under conditions of different quench energy. The critical disturbance energy between quench propagation and quench recovering was calculated, In addition, the minimum quench energy with different transport currents was obtained through the present simulation. These results are significant to the application of HTS.

1MW급 고온초전도 동기 모터 설계 고찰 (Design Considerations of 1MW Class HTS Synchronous Motor)

  • 백승규;손명환;이언용;권영길;문태선;김영춘;조창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.809-811
    • /
    • 2004
  • A 1MW class superconductng synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K($-243^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

  • PDF

Analysis on the electrical degradation characteristics of 2G HTS wires with respect to the electrical breakdown voltages

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.37-40
    • /
    • 2015
  • Recently, the electrical insulation design for electrical apparatuses is important to cope with the tendency of high voltage. The degradation characteristics of a superconducting coil due to an electrical breakdown should be considered to design a high voltage superconducting coil. In this paper, the degradation characteristics of 2G high temperature superconducting (HTS) wires are studied with respect to electrical breakdown tests. To analyze the dependency of the degradation characteristics of 2G HTS wires, the electrical breakdown tests are performed with AC(alternating current) and DC(direct current) voltage. All tests are performed by applying various magnitudes of AC and DC breakdown voltages. To verify the degradation characteristics of 2G HTS wires, the tests are performed with various 2G HTS wires with respect to stabilizer materials. The degradation characteristics of 2G HTS wires, such as Ic(critical current) and index number are measured by performing electrical breakdown tests. It is found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it is concluded that the degradation characteristics of 2G HTS wires are affected by the stabilizer material and applied voltages. The cross-sectional view of 2G HTS wires is observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS wires are concerned with hardness and electrical conductivity of stabilizer layers.

대형회전기기응용을 위한 GdBCO 레이스트랙형 팬케이크 코일의 ��치 발생과 전파특성에 관한 연구 (A Study on the Quench Initiation and Propagation Characteristics in GdBCO Racetrack Pancake Coil for Large-Scale Rotating Machines)

  • 양동규;송정빈;김광록;권오준;이우승;고태국;이해근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.24-30
    • /
    • 2011
  • The stability issue of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines, such as ship propulsion motors and power generators. However, The stability and normal zone propagation characteristics of HTS racetrack pancake (RP) coils are not sufficient yet. In this study, quench tests for a GdBCO racetrack pancake coil were carried out under the condition of $LN_2$ at 77 K. Minimum quench energy and two-dimensional normal zone propagation velocities of the coil are also discussed. Normal zone propagation velocity in the coil's curved section is faster than in its straight section due to stress effects. The test results show that the protection of the straight section is of greater importance than that of the curved section when GdBCO racetrack pancake coils are applied to large-scale rotating machines.

Breakdown Properties of Coolant for HTS Apparatus Operating at Cryogenic Temperature

  • S.M. Baek;J.M. Joung;Kim, S.H
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-55
    • /
    • 2003
  • For the dielectric insulation design of any high temperature superconducting (HTS) apparatus in the electrical power systems, the breakdown properties of cryogenic coolants such as $LN_2$ are an important factor of the insulating engineering. Therefore, this paper presented an experimental investigation of breakdown phenomena in $LN_2$ under AC voltage. And we studied the breakdown properties of LN2 with decreasing temperature. Also, the Weibull plots of the breakdown voltage of subcooled $LN_2$ at 65 K for the needle-plane electrode with electrode distance d= 10 mm are studied. The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated. The experimental data suggested that the breakdown voltage of L$N_2$ depend strongly on the temperature of $LN_2$. The breakdown characteristics of $LN_2$ under quasi-uniform and non-uniform electrical field for temperature ranging from 77 K to 65 K were clarified.

Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

  • Baek, Geonwoo;Kim, Jinsub;Lee, Woo Seung;Song, Seunghyun;Lee, Onyou;Kang, Hyoungku;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.51-55
    • /
    • 2017
  • To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

Hall voltage measurement with respect to internal layout of REBCO coated conductors in an external magnetic field

  • Kim, Young Gon;Baek, Geonwoo;Han, Seunghak;Choi, Yojong;Kim, Junseong;Jeon, Haeryong;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.48-52
    • /
    • 2019
  • Recently, many studies have been reported on the magnetoresistance and Hall effect of REBCO thin films and bulk. The voltage interferes quench detection of high-temperature superconducting magnet and generates leakage current in no insulation high-temperature superconducting coil. Therefore, in this paper, experiments on magnetoresistance and Hall effect of commercial YBCO and GdBCO tapes have been carried out. As a result, anomalous voltages expected for the magnetoresistance and Hall effect of REBCO tapes were observed and analyzed. In addition, the voltage characteristics of REBCO have been identified, and the Hall coefficient are calculated for use in high magnetic field magnet applications.

소형 HTS SMES와 실시간 전력계통 시뮬레이터의 연계 알고리즘 제안 (Connection Algorithm Proposal of Real Time Digital Simulator with Miniaturized HTS SMES)

  • 김아롱;김경훈;김광민;박민원;유인근;심기덕;김석호;성기철;박영일
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.96-101
    • /
    • 2010
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.