• Title/Summary/Keyword: high temperature state

Search Result 1,596, Processing Time 0.029 seconds

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions (고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구)

  • Park, C.M.;Boo, J.H.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine (고속 연삭기용 유정압 스핀들 개발에 관한 연구)

  • Kim, Jeong-Suk;Cho, Yong-Kwon;Park, Jin-Hyo;Moon, Hong-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

Experimental Study on DeNOx Characteristics of Urea-SCR System (Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구)

  • Ham, Yun-Young;Lee, Seong-Ho;Jung, Hong-Seok;Shin, Dong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

Unsteady State Heat Transfer Analysis of Drum Brake System (드럼 브레이크 시스템의 비정상 열전달 해석)

  • 이계섭;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.172-181
    • /
    • 1999
  • The brakes employed on commercial vehicles must be able to withstand three types of demanding services which are use-emergency stops from high speed, many repeated stops as in a delivery or bus route, and speed control in mountain descents. Two type of friction brakes are in use ; drum breaks and disc brakes. Drum brakes are of the internally expanding type in which two shoes fitted externally with friction material are forced outward against the inside of a rotating drum on the wheel unit. In this case, the Braking power is produced by the friction force between a drum and a lining, and is converted into heat. In this research an unsteady state heat transfer analysis for drum brake system of heavy truck has been performed by ABAQUS/standard code in the case of single-braking and the repeated braking condition. The temperature histories obtained by the finite Element analysis have been compared with the result calculated by the simplified formulation and the result obtained by the experiment of real vehicle conditions.

  • PDF

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

Two Factors Failure Model of Oil-Paper Insulation Aging under Electrical and Thermal Multistress

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.957-963
    • /
    • 2014
  • Converter transformers play important roles in high-voltage direct current transmission systems. This paper presents experimental and analysis results of the combined electrical and thermal aging of oil-impregnated paper at pulsating DC voltages. Breakdown voltages and time-to-breakdown of oil-paper specimens were measured by using short-time and constant-stress tests. The breakdown characteristics of combined electrical and thermal aging on insulation system were discussed. According to the relationship between failure time and aging temperature, the two-parameter Weibull model was improved. On the basis of the competing risk algorithm and the improved Weibull model, the two factors failure model was calculated. And the influence of temperature in the insulation system has been analyzed. This model performs better than the two-parameter Weibull model when both time and temperature are considered as variables in estimating the lifetime of oil-paper insulation.

p-type Zn Diffusion using by Solid State Method of $GaAs_{0.60}P_{0.40}$ and the Properties of Electroluminescence (고상 확산 법에 의한 P-type Zn 확산과 $GaAs_{0.60}P_{0.40}$의 전계발광 특성)

  • Pyo, Jin-Goo;Lim, Keun-Young;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.481-485
    • /
    • 2003
  • To diffuse Zn at solid-state, the $SiO_2/ZnO/SiO_2$ wafers was made by PECVD and RF Spotter. Thicknesses of bottom $SiO_2$ and cap $SiO_2$ was about $500{\AA}$ and about $3500{\AA}$. First test was Diffusion temperatures were $760^{\circ}C$, $780^{\circ}C$, and $800^{\circ}C$, and diffusion times were 1, 2, 3, 4, 5, and 6 hr and 2nd test was Diffusion temperatures were $760^{\circ}C$, $720^{\circ}C$, and $680^{\circ}C$, and diffusion times were 1, 2, 3, 4, 5, and 6 hr. LED chips were fabricated by the diffused wafers at Fab. The peak wavelength of all chips showed about $625{\sim}650\;nm$ and red color Main reason for Iv change was by diffusion temperature not diffusion time. The lower temperature was the higher Iv. We thick that these properties is because of the very high diffusion temperature.

  • PDF

The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Longissimus dorsi Muscle in Finishing Pigs Exposed to Constant Heat Stress

  • Yang, Peige;Hao, Yue;Feng, Jinghai;Lin, Hai;Feng, Yuejin;Wu, Xin;Yang, Xin;Gu, Xianhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1763-1772
    • /
    • 2014
  • The objective of this study was to assess the effects of constant high ambient temperatures on meat quality, antioxidant capacity, and carnosine expression in longissimus dorsi muscle of finishing pigs. Castrated 24 male DLY (crossbreeds between Landrace${\times}$Yorkshire sows and Duroc boars) pigs were allocated to one of three treatments: constant ambient temperature at $22^{\circ}C$ and ad libitum feeding (CON, n = 8); constant high ambient temperature at $30^{\circ}C$ and ad libitum feeding (H30, n = 8); and constant ambient temperature at $22^{\circ}C$ and pair-fed with H30 (PF, n = 8). Meat quality, malondialdehyde (MDA) content, antioxidant capacity, carnosine content, and carnosine synthetase (CARNS1) mRNA expression in longissimus dorsi muscle were measured after three weeks. The results revealed that H30 had lower $pH_{24h}$, redness at 45 min, and yellowness at 24 h post-mortem (p<0.05), and higher drip loss at 48 h and lightness at 24 h post-mortem (p<0.01). Constant heat stress disrupted the pro-oxidant/antioxidant balance in longissimus dorsi muscle with higher MDA content (p<0.01) and lower antioxidant capacity (p<0.01). Carnosine content and CARNS1 mRNA expression in longissimus dorsi muscle of H30 pigs were significantly decreased (p<0.01) after three weeks at $30^{\circ}C$. In conclusion, constant high ambient temperatures affect meat quality and antioxidant capacity negatively, and the reduction of muscle carnosine content is one of the probable reasons.