• Title/Summary/Keyword: high temperature range

Search Result 3,426, Processing Time 0.03 seconds

A Study of Shot Peened Spring Steel(SUP9) for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 숏피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Kyoung-Dong;Son, Myoung-Koon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.22-31
    • /
    • 2003
  • The compressive residual stress, which is induced by shot peening process, seems to be an Important factor in increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue charateristic investigation of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A Study of Shot peened Spring Steel for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 쇼트피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Keyoung-Dong;Son, Myung-Koon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.347-353
    • /
    • 2002
  • The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue characteristic study of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A study on the Creep fracture life prediction of Al7075 alloy under high temperature (고온상태에서 Al 7075 합금의 크리이프 파단수명 예측에 대한 연구)

  • Kang, Dae-Min;Koo, Yang;Baek, Nam-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.35-48
    • /
    • 1988
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications - perhaps the most critical one - is creep behavior. In this study the stress exponents n were determined during creep over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ (0.4 - 0.85 Tm) and stress range of 0.64 kgt/$mm^2$ in order to investigate the creep hehavior. The stress dependence of rapture time (n') were determined over the temperature range of $200^{\circ}C\;to\;240^{\circ}C$ and stress range of 8.13 kgt/$mm^2$ to 9.55 kgt/$mm^2$ in order to investigate to creep rupture property. And the stress transient dip tests were also carried out for the internal stress ${\sigma}i$ over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ and stress range of 0.64kgt/$mm^2$ to 17.2 kgt/$mm^2$. The creep tests for constant temperature and stress transient dip tests were conducted in air with Al 7075 alloy under constant tensile load. At around the temperature range $200^[\circ}C\;-\;230^{\circ}C$ and the stress level 8.13 - 9.55 (kgt/$mm^2$), the temperature range $280^{\circ}C\;-\;310^{\circ}C$ and the stress level 1.85 - 2.55 (kgt/$mm^2$), the temperature range $380^{\circ}C\;-\;410^{\circ}C$ and the stress 1.53 - 0.91 (kgt/$mm^2$), the stress exponent in had the value of 6.2 - 6.65 but at around the temperature range $90^{\circ}C\;-\;120^{\circ}C$ and the stress level 10 - 17.2(kgt/$mm^2$), the value of 1.3, and at around the temperature range $470^{\circ}C\;-\;500^{\circ}C$, the stress level 0.62 - 1.02 (kgt/$mm^2$) the value of 1-1. Besides these results, at around the temperature $200^{\circ}C\;-\;240^{\circ}C$ the stress dependence of rupture time (n') had the value of 6.3. Finally, it was found that the value n calculated by considering the applied stress dependence of the internal stress were in good agreement with those obtained for the creep test. Then, it was concluded that the change in n was mainly attributed to the difference of the applied stress dependence of the internal stress and the ratio of the internal stress to the applied stress, and the creep rupture life may be represented as.

  • PDF

High Temperature properties of Mechanically Alloyed Al-Ni System (기계적 합금법으로 제조된 Al-Ni 합금계의 고온특성)

  • 김유영
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1994
  • Mechanical alloying process of Al-8wt.% Ni powder was investigated for the various milling time in order to get the steady state powder. High temperature deformation behaviors of the sintered specimens were investigated by activation energy calculated after high temperature compression tests at the strain rates of 2.5$\times$10-3 s-1, 2.5$\times$10-2 s-1 and 2.5$\times$10-1 s-1 at the temperature range between $350^{\circ}C$ and $450^{\circ}C$. The steady state was obtained after 1000 minutes of milling with the PCA of 1.5 wt.% stearic acid under the condition of grinding media to powder weight ratio of 50 : 1 and impeller rotating speed of 300 rpm. True activation energy of Al-8wt.% Fe alloy was estimated to be 181 kJ/mole at the temperature range of 350~ $400^{\circ}C$ and 265 kJ/mole at the range of 400~$450^{\circ}C$.

  • PDF

The effect of temperature in high temperature SHPB test (고온 SHPB실험에서 온도의 영향)

  • Park, Kyoung-Joon;Yang, Hyun-Mo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.349-354
    • /
    • 2001
  • The split Hopkinson pressure bar has been used for a high strain rate impact test. Also it has been developed and modified for compression, shear, tension, elevated temperature and subzero tests. In this paper, SHPB compression tests have been performed with pure titanium at elevated temperatures. The range of temperature is from room temperature to $1000^{\circ}C$ with interval of $200^{\circ}C$. To raise temperature of the specimen, a radiant heater which is composed of a pair of ellipsoidal cavities and halogen lamps is developed at high temperature SHPB test. There are some difficulties in a high temperature test such as temperature gradient, lubrication and prevention of oxidation of specimen. The temperature gradient of specimen is affected by the variation of temperature. Barreling occurred at not properly lubricated specimen. Stress-strain relations of pure titanium have been obtained in the range of strain rate at $1900/sec{\sim}2000/sec$ and temperature at $25^{\circ}C{\sim}1000^{\circ}C$.

  • PDF

A Study on the Shot Peening on the Low Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 저온 피로균열진전 평가)

  • 박경동;정찬기;하경준;박상오;손명군;노영석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.282-286
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, low temperature and high temperature at $25^{\circ}C$,$-30^{\circ}C$,$-50^{\circ}C$,$-70^{\circ}C$ and $-100^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Effect of C/Ti Atom Ratio on the Deformation Behavior of TiCχ Grown by FZ Method at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.373-378
    • /
    • 2013
  • In order to clarify the effect of C/Ti atom ratios(${\chi}$) on the deformation behavior of $TiC_{\chi}$ at high temperature, single crystals having a wide range of ${\chi}$, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273 K and in a strain rate range of $1.9{\times}10^{-4}{\sim}5.9{\times}10^{-3}s^{-1}$. Before testing, $TiC_{\chi}$ single crystals were grown by the FZ method in a He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the lattice parameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observed is the ${\chi}$-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transition temperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation. The shape of stress-strain curves of $TiC_{0.96}$, $TiC_{0.85}$ and $TiC_{0.56}$ is seen to be less dependent on ${\chi}$, the work hardening rate after the softening is slightly higher in $TiC_{0.96}$ than in $TiC_{0.85}$ and $TiC_{0.56}$. As ${\chi}$ decreases the work softening becomes less evident and the transition temperature where the work softening disappears, shifts to a lower temperature. The ${\tau}_c$ decreases monotonously with decreasing ${\chi}$ in a range of ${\chi}$ from 0.86 to 0.96. The transition temperature where the deformation mechanism changes shifts to a lower temperature as ${\chi}$ decreases. The activation energy for deformation in the low temperature region also decreased monotonously as ${\chi}$ decreased. The deformation in this temperature region is thought to be governed by the Peierls mechanism.

High Temperature Deformation Behavior of Rapid-Solidification Processed Al-18Si Alloy (급냉응고된 과공정 Al-Si합금의 고온변형특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.183-186
    • /
    • 2000
  • The high temperature deformation behavior of spray-formed Al-19wt%Si-1.87wt%Mg-0.085wt.%Fe alloy was studied by torsion testing in the strain rate range of 0.001-1 sec-1 and in the temperature range of 300-500 $^{\circ}C$. The relationship between stress temperature and strain rate is expressed using the Power law. the behavior of dynamic recrystallization is showed in 300-35$0^{\circ}C$, 1-0.1sec-1 and the behavior of dynamic recovery is showed in 450-50$0^{\circ}C$, 0.01-0.001sec-1 The size of Si particles is mall when the temperature is low and the strain rate is high. The strain rate sensitivity(m) and the apparent activation energy(Q) indicate the dependence on strain rate and temperature for flow stress respectively. The hot ductility is high when m is high and Q is low. The maps of strain rate sensitivity and apparent activation energy suggest the optimum processing conditions.

  • PDF

Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments

  • Keun-tae, Park;Mihyang, Oh;Younghye, Joo;Jong-Kwon, Han
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.248-255
    • /
    • 2023
  • Objective: Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. Methods: The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. Results: The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. Conclusion: Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.

A study on the mechanical properties of the polymer cement mortar in a high temperature region (고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kwon, Young-Jin;Kim, Hyung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF