• 제목/요약/키워드: high temperature mechanical properties

검색결과 1,841건 처리시간 0.037초

소형가스터빈 디스크의 얼간단조 (The Hot Forging of Small Size Gas Turbine Disks)

  • 차도진;송영석;김영득;김동권
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF

고순도강의 기계적 성질에 미치는 탄소 및 황 함량의 영향 (Effects of Carbon and Sulfur Content on Mechanical Properties of High Purity Steel)

  • 윤정봉;김성일;김인배
    • 대한금속재료학회지
    • /
    • 제47권6호
    • /
    • pp.331-337
    • /
    • 2009
  • To lower the annealing temperature and the deviation of the mechanical properties of bake hardening steels, high purity steels were investigated. The steels were characterized by treating at low recrystallization temperature. It was confirmed that the strengthening originated from the solid solution of carbon and the ferrite grain refinement by fine MnS precipitates as carbon and sulfur contents increased in high purity steels. However, it was observed that there was no more increase of strength in steels containing over 40 ppm of carbon. It was considered that the excess carbon formed either the carbon cluster or the low temperature unstable carbides which had the negligible effect on the strengthening because they were reported to be highly coherent with the matrix. The carbon cluster and unstable carbides could be transformed to the stable cementite during bake hardening treatment. MnS was not observed in the high purity steel containing 5 ppm S, resulting in very coarse recrystallized grains and good ductility. As sulfur content increased, the recrystallized grain size decreased due to the formation of the fine MnS precipitates.

고망간 오스테나이트계 강판의 자동차 부품 적용성 연구 (A Study on the Application of High Manganese Austenitic Steel Sheet to Automobile Parts)

  • 정연일;채수홍;김소연;홍승현;임종대
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2009
  • The mechanical properties, press formability and texture of a TWIP steel were investigated. This steel combines both high strength and high ductility due to so called TWIP effect which are related to the microstructural changes. The formation of twins during deformation leads to an increase of its mechanical properties. In this study, the texture and mechanical properties evolutions of a TWIP steel subjected to tensile tests and press trials at room temperature were investigated in relation to the feasibility of the application to automotive body parts.

  • PDF

Mechanical behavior of Beishan granite samples with different slenderness ratios at high temperature

  • Zhang, Qiang;Li, Yanjing;Min, Ming;Jiang, Binsong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.157-166
    • /
    • 2021
  • This paper aims at the temperature and slenderness ratio effects on physical and mechanical properties of Beishan granite. A series of uniaxial compression tests with various slenderness ratios and temperatures were carried out, and the acoustic emission signal was also collected. As the temperature increases, the fracture aperture of intercrystalline cracks gradually increases, and obvious transcrystalline cracks occurs when T > 600℃. The failure patterns change from tensile failure mode to ductile failure mode with the increasing temperature. The elastic modulus decreases with the temperature and increases with slenderness ratio, then tends to be a constant value when T = 1000℃. However, the peak strain has the opposite evolution as the elastic modulus under the effects of temperature and slenderness ratio. The uniaxial compression strength (UCS) changes a little for the low-temperature specimens of T < 400℃, but a significant decrease happens when T = 400℃ and 800℃ due to phase transitions of mineral. The evolution denotes that the critical brittle-ductile transition temperature increases with slenderness ratio, and the critical slenderness ratio corresponding to the characteristic mechanical behavior tends to be smaller with the increasing temperature. Additionally, the AE quantity also increases with temperature in an exponential function.

발전설비용 2.25Cr-1Mo 강의 시효에 의한 기계적 강도 특성 변화에 대한 연구 (A Study on the Mechanical Strength Change by Thermal Aging of 2.25Cr-1Mo Steel)

  • 양현태;김상태
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1771-1778
    • /
    • 2000
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature for the extended periods. Original, aged artificiall y and used material were tested to obtain the tensile strength, hardness and impact absorbed energy. Tensile strength, hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

자동차 휠용 6061 Al합금의 단조 및 T6 열처리 전후의 미세조직과 기계적 특성 평가 (Evaluation of Mechanical Property and Microstructure of Forged and T6-treated 6061 Aluminum Alloy Wheel)

  • 이지혜;정헌수;염종택;김정한;박노광;이용태;이동근
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.354-359
    • /
    • 2007
  • Effects of forging and mechanical properties of 6061 aluminum alloy wheel for automobiles were investigated in the present study. Microstructural and tensile characteristics of automobile wheel after hot forging process using dynamic screw press were analyzed to evaluate effect of metal flow on mechanical properties. The results showed advanced mechanical properties of 6061 alloy wheel because of $Mg_2Si$ precipitation by T6, elongated grain by forging, and work hardening by dense metal flow, etc. Hot compression tests were conducted in order to characterize high temperature compression deformation behaviors and microstructural variation in the range of $300{\sim}450^{\circ}C$, in the strain rate range of $10^{-3}{\sim}10^1\;sec^{-1}$. As strain rate increased, maximum compression stress increased but it was shown the reverse linear relation between temperature and maximum stress irrelevant to strain rate variation. On the other hand, temperature and yield stress didn't have any linear relation and its relation showed big deviation by a function of strain rate and test temperature.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동 (Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band)

  • 최광식;심동영;최원우;신준형;남영우
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.201-215
    • /
    • 2022
  • 본 연구에서는 초고온 환경에서 내화학성 및 열적 안정성이 우수한 지오폴리머 기반의 알루미노실리케이트 레진과 세라믹 섬유를 활용한, 목표주파수 X-band(8.2 GHz to 12.4 GHz)에서 전자파를 흡수하는 세라믹 복합재(Radar-absorbing ceramic composite, RACC)를 구현하였다. 주 성분이 FeSi인 판형 구조의 샌더스트 자성 입자를 분산시킨 알루미노실리케이트 레진은 목표 주파수 대역에서 자성 및 유전손실 특성을 발휘하였고, 입도와 무게분율별 유전특성을 Cole-Cole Plot으로 표현하였다. 샌더스트가 분산된 알루미노실리케이트 레진의 미세구조, 화학적 성분 및 결정, 자기 및 열적 특성 등을 분석하기 위해 SEM, EDS, VSM 및 TGA를 측정하였다. 샌더스트의 입도 크기 35 ㎛, 무게분율 40 wt.%를 분산시킨 레진의 유전손실 특성을 활용하여, X-band에서 약 1.51 GHz 대역폭에 대해 -10 dB 이하의 반사손실 성능을 발휘하는 단층형(t = 1.585 mm) RACC를 설계 및 제작하였다. 제작된 RACC의 초고온(25℃ to 1,000℃)에서 전자파 흡수 거동을 살피기 위해 개발된 초고온 환경 자유공간측정 장비를 활용하여 X-band 대역에서 그 성능을 검증하였다.