• Title/Summary/Keyword: high temperature electrolysis

Search Result 91, Processing Time 0.022 seconds

An Electrochemical Reduction of TiO2 Pellet in Molten Calcium Chloride (CaCl2 용융염에서 TiO2 펠렛의 전기화학적 환원반응 특성)

  • Ji, Hyun-Sub;Ryu, Hyo-Yeol;Jeong, Ha-Myung;Jeong, Kwang-Ho;Jeong, Sang-Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • A porous $TiO_2$ pellet was electrochemically converted to the metallic titanium by using a $CaCl_2$ molten salt system at $850^{\circ}C$. Ni-$TiO_2$ and graphite electrodes were used as cathode and anode, respectively. The electrochemical behaviour of $TiO_2$ pellet was determined by a constant voltage control electrolysis. Various reaction intermediates such as $CaTiO_3$, $Ti_2O$ and $Ti_6O$ were observed by XRD analysis during electrolysis of the pellet. Once $TiO_2$ pellet was converted to a porous metallic structure, the porous structure disappeared by sintering and shrinking with increasing the reaction time at high temperature.

A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction (CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰)

  • SANGKUK KIM;NAMGI JEON;SANGHYEOK LEE;CHIKYU AHN;JIN SOO AHN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.162-167
    • /
    • 2024
  • Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.

A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion (촉매연소를 이용한 수소버너의 작동 특성에 관한 연구)

  • Kim, Tae-Young;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.

Symmetrical Solid Oxide Electrolyzer Cells (SOECs) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Gadolinium Doped Ceria (GDC) Composite Electrodes

  • Lee, Kyoung-Jin;Lee, Min-Jin;Park, Seok-hoon;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.489-493
    • /
    • 2016
  • Scandia ($Sc2O_3$)-stabilized zirconia (ScSZ) electrolyte-supported symmetrical solid oxide electrolyzer cells (SOECs), in which lanthanum strontium cobalt ferrite (LSCF)-gadolinia ($Gd_2O_3$)-doped ceria (GDC) composite materials are used as both the cathode and anode, were fabricated and their high temperature steam electrolysis (HTSE) performance was investigated. Current density-voltage curves were obtained for cells operated in 10% $H_2O$/90% Ar at 750, 800, and $850^{\circ}C$. It was possible to determine the ohmic, cathodic, and anodic contributions to the total overpotential using the three-electrode technique. The HTSE performance was significantly improved in the symmetrical cell with LSCF-GDC electrodes compared to the cell consisting of an Ni-YSZ cathode and LSCF-GDC anode. It was found that the overpotential due to the LSCF-GDC cathode largely decreased and, at a given current density, the total cell voltage decreased, which resulted in the enhanced hydrogen production rate in the symmetrical cell.

A Study on IR Characterization of Electrolyzed Water for Si Wafer Cleaning (전리수를 이용한 Si 웨이퍼 세정의 IR 특성연구)

  • Byeongdoo Kang;Kunkul Ryoo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature Process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as functional water cleaning are being studied. The electrolyzed water was generated by an electrolysis system which consists of anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH$_4$Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO$_2$ concentration changes dissolved from air. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about 9$\ell$chemicals, while EW did only 400$m\ell$ HCI electrolyte or 600$m\ell$ NH$_4$Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for eliminating environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

Analysis of Methane Conversion Rate and Selectivity of Methane Pyrolysis Reaction in Ceramic Tube According to Temperature and Reaction Time (온도와 반응 시간에 따른 세라믹 튜브 내 메탄 열분해 반응의 메탄 전환율과 선택도 분석)

  • LEE, DONGKEUN;KIM, YOUNGSANG;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Interest in hydrogen productions that do not emit carbon dioxide and can produce hydrogen at a low price is increasing. Reforming and electrolysis are widely used, but they have limitations, such as carbon dioxide problems and costs. The methane can be decomposed as hydrogen and solid carbon without carbon dioxide emission at high temperatures. In this research, the methane pyrolysis experiment was conducted at 1,200℃ and 1,400℃ in a ceramic tube. The composition of the produced gas was measured by gas chromatography before carbon blocked the tube. The methane conversion rate and hydrogen selectivity were calculated based on the results. The hydrogen selectivity was derived as 60% and 55% at the highest point at 1,200℃ and 1,400℃, respectively. The produced solid carbon was expected to be carbon black and was analyzed using scanning electron microscope.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Cross-linking of Acid-Base Composite Solid Polymer Electrolyte Membranes with PEEK and PSf (산-염기형 PEEK와 PSf를 이용한 고체 고분자전해질 복합막의 가교화)

  • Jang, In-Young;Jang, Doo-Young;Kwon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Sim, Kyu-Sung;Bae, Ki-Kwang;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2006
  • Hydrogen as new energy sources is highly efficient and have very low environmental emissions. The proton exchange membrane fuel cell (PEMFC) is an emerging technology that can meet these demands. Therefore, the preparation of stable polymeric membranes with good proton conductivity and durability are very important for hydrogen production via water electrolysis with PEM at medium temperature above $80^{\circ}C$. Currently Nafion of Dupont and Aciflex of Asahi, etc., solid polymer electrolytes of perfluorosulfonic acid membrane, are the best performing commercially available polymer electrolytes. However, these membrane have several flaws including its high cost, and its limited operational temperature above $80^{\circ}C$. Because of this, significant research efforts have been devoted to the development of newer and cheaper membranes. In order to make up for the weak points and to improve the mechanical characteristics with cross -linking, acid-base complexes were prepared by the combination PSf-co-PPSS-$NH_2$ with PEEK-$SO_3H$. The results showed that the proton conductivity decreased in 17.6% and 40% but tensile strength increased in 78% and 98%, about $20.65\;{\times}\;10^6N/m^2$, in comparison with SBPSf/HPA and SPEEK/HPA complex membrane.

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Electrodeposition of Nickel from Nickel Sulphamate Baths (설파민산 니켈 도금욕에서의 니켈 전착)

  • Lee, Hong-Ro;Lee, Dong-Nyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.3
    • /
    • pp.125-133
    • /
    • 1985
  • About 1 mm thick nickel electrodeposits were obtained from nickel sulphamate baths at 40 to 60$^{\circ}C$ over the range of current densities form 5 to 25 A/$dm^2$. Deposits from above about 1.2V of cathode overpotential had randomly distributed fine grains due to a higher nucleation rate and hence had a high hardness. A deposit obtained at 0.63 V had the [110] orientation with a field oriented fine structure which yield a relatively high hardness. Deposite obtained at the intermediate overpotentials showed the [100] orientation with coarse field oriented structure whose column width tended to decrease with increasing cathode overpotential, which, in turn, gave rise to an increase in hardness. Residual stresses of the deposits measured by X-ray technique were mostly tensile but did not exceed 80 MPa, and were occasionally very small compressive. The cathode current efficiency was above 90% in all the electrolysis conditions, whereas the anode current efficiency varied from 50 to 90% with current density, bath temperature and nickel chloride concentration, among which the chloride was the most influential.

  • PDF