• Title/Summary/Keyword: high temperature electrolysis

Search Result 91, Processing Time 0.029 seconds

Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle (고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가)

  • JUNG, HYE YOUNG;LEE, JUNYOUNG;YOON, DAEJIN;HAN, CHANGHYUN;SONG, MINAH;LIM, SUHYUN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

High Temperature Steam Electrolysis for Production of Hydrogen Using SOFC (스팀으로부터 고체산화물 연료전지를 이용한 수소제조)

  • Kang, Jung-Shik;Shim, Jae-Geum;Lee, Sang-Deuk;Lee, Byoung-Kyon;Hong, Suck-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.455-458
    • /
    • 2006
  • 최근 들어 고체산화물 연료전지(SOFC) 기술이 급성장함에 따라 고온 수증기 전기분해(HTE) 기술이 물로부터 수소를 대량으로 제조할 수 있는 환경 친화적인 기술로 주목 받고 있다 고온 수증기 전기분해는 기존의 액상 전기분해보다 총 에너지 요구량이 작고 전기분해에 필요한 최소의 전기에너지가 온도가 증가할수록 감소하며 고온 수증기 전기분해에 요구되는 에너지의 일부를 전기에너지 대신 열의 형태로 공급이 가능하여 보다 높은 효율을 기대할 수 있다. 따라서 off peak시 기저부하전력을 이용하고, 공정의 열원으로 고온가스의 폐열, 천연가스의 부분산화 반응열 또는 고온 가스원자로의 폐열을 활용하면 SOFC 이용 고온 수증기 전기분해 공정은 수소경제사회에서 요구되는 수소를 대량으로 제조할 수 있는 경제적인 공정이 될 것이다.

  • PDF

Synthesis and Characteristic of Cu/YSZ Composite for High Temperature Electrolysis Cathode (고온수전해 수소극용 Cu/YSZ의 제조 및 특성)

  • Hong, Hyun-Seon;Kim, Jong-Min;Shin, Seock-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.101-104
    • /
    • 2007
  • 700 $^{\circ}C$이상의 온도에서 실시되는 고온수전해는 다가오는 수소경제시대의 주요한 수소제조기 술로 주목되고 있다. 이 연구에서는 Ni보다 전기전도도가 우수하고 가격이 저렴한 Cu를 사용하여 고온수 전해 수소극용 Cu/YSZ 복합체를 기계적합금법에 의해 제조하여 미세구조를 관찰하였고 Cu/YSZ를 수소전극으로 한 반전지를 제조하여 수조제조 실험을 실시하였다. Cu/YSZ 복합체는 Cu와 YSZ를 6:4(vol%)의 조성비로 유성밀을 사용하여 400 rpm으로 24시간 동안 실시하여 제조하였다. 고에너지 볼밀 후 500 nm이하의 나노크기의 복합체가 제조되었으며 Cu입자에 YSZ가 고르게 분포되어 있었다. 수은압입법으로 측정한 기공률은 70%이고 기공크기는 평균 0.5 ${\mu}m$으로 미세한 기공으로 이루어져 있었다. 제조된 Cu/YSZ 복합체를 수소전극으로 한 반전지를 제조하여 수소제조 실험을 실시한 결과 Ni/YSZ 전극보다 수소제조 성능이 우수한 것으로 나타났다. Cu의 높은 열팽창계수와 낮은 녹는점을 보완하면 우수한 고온수전해용 전극재료로 사용될 것으로 판단된다.

  • PDF

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Electrical Properties of Renewable Energy Carbon Film for Light Source Technology (광원 적용을 위한 신재생에너지 카본 박막의 전기적 특성)

  • Lee Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.558-560
    • /
    • 2005
  • The carbon film was deposited by the electrolysis of methanol solution. Carbon films have been grown on silicon substrates using the method of chemical process. From investigations of the Raman spectroscopy and the FTIR spectroscopy, the carbon film deposited by the electrolysis was identified the hydrogenated carbon film with the porous structure. The carbon film deposited by elctrolysis of methanol was identified as the hydrogenated carbon film with porous structure. Deposition parameters for the growth of the carbon films were current density, methanol liquid temperature. We electrical resistance and surface morphology of carbon films formed various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes is relatively wider. We found that the electrical resistance in the films independent of both current density and methanol liquid temperature. The temperature dependence of the electrical resistance in the low resistance carbon films is different from one obtained in graphite..

Preparation and characteristics of modified Ni/YSZ cermet for high temperature electrolysis (고온 수전해 전극용 modified Ni/YSZ cermet 제조 및 전극특성)

  • Chae, Ui-Seok;Park, Geun-Man;Hong, Hyeon-Seon;Choo, Soo-Tae;Yun, Yongseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.98-107
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by dry or wet mechanical alloying methods. The Ni/YSZ composit particle was directly fabricated from the ball milling of Ni and YSZ powder or obtained from the reduction of NiO/YSZ particle after the ball milling of NiO and YSZ. In the case of the NiO/YSZ composite particle, the dry milling increased the average particle size whereas the wet milling decreased the size. The dry milling showed that fine YSZ particles were distributed over large Ni surfaces while Ni and YSZ particles similar in size were well mixed in the wet milling method. These features were the same in the Ni/YSZ composite particle prepared from Ni and YSZ powders. The electrical conductivity of the wet-milled Ni/YSZ cermet showed the highest value of $2{\times}10^2S/cm$ among the specimens and this value was increased to $1.4\times10^4S/cm$ after the sintering at $900^\circ{C}$ for 1 h.

Preparation and Characterization of (La, Sr)$MnO_3$ Electrode for High Temperature Steam Electrolysis by Glycine-Nitrate Process (Glycine-Nitrate Process를 이용한 고온 수증기 전해용 (La, Sr)$MnO_3$ 전극의 합성 및 특성 연구)

  • Choi, Ho-Sang;Kim, Hyun-Jin;Ryu, Si-Ok;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • LSM powder material for an oxygen-electrode(anode) of High Temperature Steam Electrolysis (RISE) was synthesized by a Modified-Glycine nitrate process(GNP). Amount of nitric acid and its concentration was varied to find out an appropriate composition for the oxygen-electrode(anode). In order to optimize the amount of Glycine used as an oxidant of self-combustion process, the ratio of Glycine to Anion was varied. $La_{0.8}Sr_{0.2}MnO_3$, $La_{0.5}Sr_{0.5}MnO_3$, and $La_{0.2}Sr_{0.8}MnO_3$ were synthesized in this study. Those LSM were dried for overnight to remove moisture from the material at $110^{\circ}C$ and were calcined 2 hours at $650^{\circ}C$ and were sintered in a furnace for 5 hours at $1400^{\circ}C$. Their structures, surface morphologies, surface areas, and weight changes were investigated with XRD, SEM, BET, and TG/DTA. The best perovskite phase for the oxygen-electrode of HTSE was obtained with $La_{0.8}Sr_{0.2}MnO_3$ formula in which 100 ml of 3M nitric acid was used in the preparation of its formula. The optimized ratio of Glycine to Anion was 2.

A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes ((La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구)

  • Ji, Jong-Sup;Kim, Chang-Hee;Kang, Yong;Sim, Kyu-Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.627-631
    • /
    • 2005
  • The $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia (LSM/YSZ) composites were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvanodynamic and galvanostatic polarization method. For this purpose, the LSMperovskites were fabricated in powders by co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composites were deposited on 8 mol% YSZ electrolyte disks by means of a screen printing method, followed by sintering at temperatures above $1,100^{\circ}C$. From the experimental results, it is concluded that the electrochemical properties of LSM and the LSM/YSZ composites are closely related to their microstructure and operating temperatures.