• 제목/요약/키워드: high temperature and pressure

검색결과 4,112건 처리시간 0.034초

Thermal-pressure loading effect on containment structure

  • Kwak, Hyo-Gyoung;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.617-633
    • /
    • 2014
  • Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, three-dimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.

분광 분석법에 의한 고압 수은등의 온도분포 측정 (Temperature Distribution Measurement of High-pressure Mercury Lamp using Spectroscopic Method)

  • 김상용;김창섭;지철근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1989년도 추계학술발표회논문집
    • /
    • pp.13-18
    • /
    • 1989
  • Temperature distribution of 250W high-pressure mercury lamp has been measured by the spectroscopic method using relative intensities of spectral lines. To obtain radial temperature distribution, the measured intensity which was integrated along the line of sight was transformed into radial line intensity by Abel's inversion. Temperature was determined from relative intensities of spectral lines of the same atomic species. The measured temperature of 250W high-pressure mercury lamp is 6000K at the axis. In this experiment temperature profile of high-pressure arc is papabolic as known.

  • PDF

고압 충전 시 수소 저장 탱크의 온도 변화 및 충전량에 관한 해석 (An Analysis on the Temperature Changes and the Amount of Charging of Hydrogen in the Hydrogen Storage Tanks During High-Pressure Filling)

  • 이길강;이길초;명노석;박경우;장선준;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.163-171
    • /
    • 2021
  • Securing energy sources is a key element essential to economic and industrial development in modern society, and research on renewable energy and hydrogen energy is now actively carried out. This research was conducted through experiments and analytical methods on the hydrogen filling process in the hydrogen storage tank of the hydrogen charging station. When low-temperature, high-pressure hydrogen was injected into a high-pressure tanks where hydrogen is charged, the theoretical method was used to analyze the changes in temperature and pressure inside the high-pressure tanks, the amount of hydrogen charge, and the charging time. The analysis was conducted in the initial vacuum state, called the First Cycle, and when the residual pressure was present inside the tanks, called the Second Cycle. As a result of the analysis, the highest temperature inside the tanks in the First Cycle of the high-pressure tank increased to 442.11 K, the temperature measured through the experiment was 441.77 K, the Second Cycle increased to 397.12 K, and the temperature measured through the experiment was 398 K. The results obtained through experimentation and analysis differ within ±1%. The results of this study will be useful for future hydrogen energy research and hydrogen charging station.

고온용 세라믹 박막형 압력센서의 제작 (The Fabrication of Ceramic Thin-Film Type Pressure Sensors for High-Temperature applications)

  • 김재민;최성규;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.456-459
    • /
    • 2002
  • This paper describes fabrication and characteristics of ceramic pressure sensor for working at high temperature. The proposed pressure sensor consists of a Ta-N thin-film, patterned on a Wheatstone bridge configuration, sputter deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097~1.21mV/$V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Temperature Characteristics of Cascade Refrigeration System by Pressure Adjustment

  • Chung Han-Shik;Jeong Hyo-Min;Kim Yeong-Geun;Rahadiyan Lubi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2303-2311
    • /
    • 2005
  • Super low temperature has many applications nowadays, from the chemical processing, automotives manufacturing, plastic recycling, etc. Considering of its wide application in the present and the future, study of the super-low temperature refrigeration system should be actively carried out. Super low state temperature can be achieved by using multi-stage refrigeration system. This paper present the development and testing of cascade refrigerator system for achieving super-low temperature. On this experiment, two different types of HCFCs refrigerants are utilized, R-22 and R-23 were applied for the high stage and the low-pressure stage respectively. The lowest temperature in the low-pressure evaporator that can be achieved by this cascade refrigeration system is down to $-85^{\circ}C$. This experiment is aimed to study the effect of inlet pressure of the low-pressure stage evaporator and low-pressure stage compressors inlet pressure characteristics to the overall temperature characteristics of cascade refrigeration system.

복합재료 연료전지 스택의 열응력 해석 (Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model)

  • 전지훈;황운봉;엄석기;김수환;임태원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구 (Aluminum particle ignition characteristics at high pressure condition up to 2 GPa)

  • 이경철;타이라 쯔바사;구군모;이재영;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF

사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구 (A Study on Injection Characteristic using Active Temperature Control of Injection mold)

  • 조창연;신홍규;홍남표;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구 (Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner)

  • 김재돌
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

고온용 실리콘 압력센서 개발 (Development of the high temperature silicon pressure sensor)

  • 김미목;남태철;이영태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.147-150
    • /
    • 2003
  • In this paper, We fabricated a high temperature pressure sensor using SBD(silicon- direct-bonding) wafer of $Si/SiO_2$/Si-sub structure. This sensor was very sensitive because the piezoresistor is fabricated by single crystal silicon of the first layer of SDB wafer. Also, it was possible to operate the sensor at high temperature over $120^{\circ}C$ which is the temperature limitation of general silicon sensor because the piezoresistor was dielectric isolation from silicon substrate using silicon dioxide of the second layer. The sensitivity of this sensor is very high as the measured result of D2200 shows $183.6\;{\mu}V/V{\cdot}kPa$. Also, the output characteristic of linearity was very good. This sensor was available at high temperature as $300^{\circ}C$.

  • PDF