• Title/Summary/Keyword: high temperature $\beta$ phase

Search Result 134, Processing Time 0.038 seconds

A study on the manufacture and dielectric of the polyvinylidene fluoride thin films through vapor deposition method (진공증착법을 이용한 PVDF박막의 제작과 유전 특성에 관한 연구)

  • Park, S.H.;Im, U.C.;Cho, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.420-422
    • /
    • 1995
  • PVDF (polyvinylidene fluoride) has at least from known crystalline structure ( ; they are referred to as the $\alpha$, $\beta$, $\gamma$ and $\alpha_p$ phase or forms II, I, III and $IV_p$). In this study, the manufactured PVDF thin films through vapor deposition method had for II ( ; the substrate temperature at 30$^{\circ}C$). The dielectric behavior of poly(vinylidene fluoride) is affected by orientation and crystal modification. The very high value of the dielectric constant for high temperature conditioned film is believed to be due to the orientation effect. The loss peak caused by molecular motion of the molecules in crystalline regions.

  • PDF

Study of Phase Transition of Copper(II)-phthalocyanine using a Near Field Scanning Microwave Microscope (근접장 마이크로파 현미경을 이용한 Copper(II)-phthalocyanine의 Phase Transition 연구)

  • Park, Mie-Hwa;Yoo, Hyun-Jun;Yun, Soon-Il;Lim, Eun-Ju;Lee, Kie-Jin;Cha, Deok-Joon;Lee, Young-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • We report the changes of the microwave reflection coefficients S$_{11}$ of copper(II)-phthalocyanine (CuPc) thin films by using a near-field microwave microscope(NSMM) in order to understand the phase transition of CuPc. For a NSMM system, a high-quality microstrip resonator coupled with a dielectric resonator was used. CuPc thin films were prepared on the pre-heated glass substrates using a thermal evaporation method. The reflection coefficients S$_{11}$ of CuPc thin films were changed by the dependence on the substrate pre-heating temperatures. By comparing reflection coefficient S$_{11}$ and crystal structures, we found the phase transition of CuPc thin films from $\alpha$-phase to $\beta$-phase at the substrate heating temperature 200 $^{\circ}C$./TEX>.

The Selection of Optimum Measurement Method of Antimicrobial Activity and Constituent Phase of Yuggi Alloy according to Heat Treatment Condition (유기합금의 열처리조건에 따른 구성상의 제어와 최적 항균특성 측정방법의 선정)

  • Park, Kyu-Ha;Hwang, Dae Youn;Son, Hong-Joo;Choi, Ji Woong;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.233-238
    • /
    • 2021
  • The mechanical, anti-tarnishing, and corrosion characteristics of Yuggi (Cu-22wt%Sn) alloy are greatly affected by fraction of constituent phases according to heat treatment method. The Yuggi heat-treated at 750℃ has a β1' phase of 98% or more, which is a high-temperature disordered beta phase, on the other hand, cast Yuggi that Sn is solid-solutioned into Cu consists with α-phase over 60v/o. This difference of constituent phases of Yuggi may cause a difference in dissolution of Cu under antimicrobial test condition. Nonetheless, few studies have been conducted on the effect of fraction of constituent phases and constituent phases in antimicrobial activity. In addition, few studies have also been conducted on the suitable method measuring the antimicrobial activity of Yuggi. Hence, the purpose of this study is to provide an optimum measurement method of antimicrobial activity, and to evaluate quantitatively the effect of constituent phases on antimicrobial activity.

Evolution on Microstructure and Mechanical Property of Ti65Fe35 Hypereutectic Alloys by Adding Low Melting Temperature Elements (저융점 원소의 첨가에 따른 Ti65Fe35 과공정 합금의 미세구조와 기계적 특성의 변화)

  • Hwang, Yun Jung;Hong, Sung Hwan;Kim, Jeong Tae;Kim, Young Seok;Park, Hae Jin;Kim, Hee Jin;Jeong, Yeon Beom;Lee, Young Hoon;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.557-562
    • /
    • 2017
  • The microstructural evolution and modulation of mechanical properties were investigated for a $Ti_{65}Fe_{35}$ hypereutectic alloy by addition of $Bi_{53}In_{47}$ eutectic alloys. The microstructure of these alloys changed with the additional BiIn elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a ${\beta}$-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (${\beta}$-Ti/TiFe + ${\beta}$-Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2 %). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the ${\beta}$-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys (급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석)

  • 정기승
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF

A Study on the Elution Mechanism of Ni(II)-Isonitrosoethylacetoacetate Imine Chelates by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 Ni(II)-Isonitrosoethylacetoacetate Imine 유도체 킬레이트의 용리 메카니즘에 관한 연구)

  • Kim In-Whan;Choi Gang-Yeol;Lee Man-Ho;Kang Chang-Hee;Lee, Won
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.697-708
    • /
    • 1992
  • Liquid Chromatographic behavior of Ni(II) in Isonitrosoethylacetoacetate Imine(IEAA-NR), Ni(IEAA-NH)(IEAA-NR)(R = H, CH_3, C-2H_5, n-C_4H_9, C_6H_5-CH_2) chelates were investigated by reversed-phase HPLC on Micropak MCH-5 column using methanol/water as mobile phase. The optimum conditions for the separation of Ni(IEAA-NH)(IEAA-NR) chelates were examined with respect to the effect of the flow rate, sample solvent, mobile phase strength and column temperature. It was fo$und that metal chelates were properly eluted in an acceptable range of capacity factor value(0{\le}logk'{\le}1). The dependence of the logarithm of capacity factor (k') on the volume fraction of water in the binary mobile phase as well as on the liquid-liquid extraction distribution ratio (Dc) in methanol-water/n-alkane extraction system showed the good linearties, and the dependence of the logarithm of capacity factor (k') on the column temperature and on the enthalpy exhibited the good linearties, and the compensation temperature ({\beta}) from the slope was 773.47{\circ}K. It was suggested that the retention of metal chelates was largely affected by the hydrophobic effect.

  • PDF

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF