• Title/Summary/Keyword: high strength steel tubes

검색결과 57건 처리시간 0.026초

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

평균응력을 동반하는 2.2Ni-lCr-0.5Mo강의 피로수명과 변형률에너지 밀도와의 상관관계 (Correlation Between Fatigue Life of 2.2Ni-0.1Cr-0.5Mo Steel Accompanying Mean Stresses with Cyclic Strain Energy Density)

  • 고승기;하정수
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.167-174
    • /
    • 2003
  • Fatigue damage of 2.2Ni-1Cr-0.5Mo steel used fir high strength pressure tubes and vessels was evaluated using uniaxial specimens subjected to strain-controlled fatigue loading. Based on the fatigue test results from different strain ratios of -2. -i 0, 0.5, 0.75, the fatigue damage of the steel was represented by using a cyclic strain energy density. Mean stress relaxation depended on the magnitude of the applied strain amplitude. The high pressure vessel steel exhibited the cyclic softening behavior. Total strain energy density consisting of the plastic strain energy density and the elastic tensile strain energy density described fairly well the fatigue life of the steel, taking the mean stress effects into account. Compared to other fatigue damage parameters, fatigue life prediction by the cyclic strain energy density showed a good correlation with the experimental fatigue lift within a factor of 3.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

수계소화설비용 경량벽 스테인리스 강관의 사용가능성 평가에 관한 연구 (A Study on the Possibility of using Light-Wall Stainless Steel Pipe for Water-Based Fire Protection System)

  • 남준석;원성연;김영호;민경탁;박승민
    • 한국화재소방학회논문지
    • /
    • 제24권5호
    • /
    • pp.94-101
    • /
    • 2010
  • 수계소화설비에 사용되고 있는 관으로는 배관용 탄소강관, 압력배관용 탄소강관, 동관 등이 사용되고 있다. 최근 건축물의 고층화, 복합화로 소화설비에는 내식성이 우수하고, 시공성이 간편하며, 가볍고 경제적인 관의 사용이 고려되고 있다. 이러한 특징을 가진 스테인리스 강관과 기존에 사용되고 있는 동관의 물성, 강도, 내식성, 내열성 등의 비교를 통해 스테인리스 강관의 소화설비로의 사용 가능성을 평가하고자 하였다. 그 평가결과로 경량벽 스테인리스 강관인 일반배관용 스테인리스 강관(KS D 3595)은 1.2MPa미만의 압력에서 수계소화설비에 사용될 수 있는 충분한 물성, 강도, 내식성, 내열성 등을 가지고 있음을 확인할 수 있었다.

소형펀치법에 의한 고온배관재료의 크리프열화 평가 (The Evaluation of Creep Degradation for the High Temperature Pipe Material by Small Punch Test)

  • 유근봉;장성호;송기욱;하정수;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.37-42
    • /
    • 2000
  • The boiler tubes and steam Pipes operating both at high temperature and pressure for a long period of time in a power plant are degraded by creep because of internal pressure. So, the remaining life of a component is evaluated by the creep rupture strength. Although the conventional method to evaluate the creep damage is widely used, it has some disadvantages such as requires large size specimen and long employed to evaluate the correlation between fracture toughness and evaluation time. Recently, new method so called "small lunch test' is used to evaluate degradation of creep. In this study, a conventional creep test and a small punch test are conducted using 2.25Cr-1Mo steel which is mainly used for the boiler tubes and steam pipes in power plant. The creep life, approximately 1,500 hrs, is determined by conventional method under a severe condition then specimens for a small Punch test are obtained after certain time intervals such as 1/4, 1/2 and 3/4 of final rupture time, respectively.

  • PDF

The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme

  • Zand, Ahmed W. Al;Hosseinpour, Emad;Badaruzzaman, Wan Hamidon W.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.229-235
    • /
    • 2018
  • This study investigated the behaviour of the simply supported hollow steel tube (HST) beams, either concrete filled or unfilled when strengthened with carbon fibre reinforced polymer (CFRP) sheets. Eight specimens with varied tubes thickness (sections classification 1 and 3) were all tested experimentally under static flexural loading, four out of eight were filled with normal concrete (CFST beams). Particularly, the partial CFRP strengthening scheme was used, which wrapped the bottom-half of the beams cross-section (U-shaped wrapping), in order to use the efficiency of high tensile strength of CFRP sheets at the tension stress only of simply supported beams. In general, the results showed that the CFRP sheets significantly improved the ultimate strength and energy absorption capacities of the CFST beams with very limited improvement on the related HST beams. For example, the load and energy absorption capacities for the CFST beams (tube section class 1) were increased about 20% and 32.6%, respectively, when partially strengthened with two CFRP layers, and these improvements had increased more (62% and 38%) for the same CFST beams using tube class 3. However, these capacities recorded no much improvement on the related unfilled HST beams when the same CFRP strengthening scheme was adopted.

콘크리트 충전 유리섬유 복합소재 기둥의 세장비 특성에 관한 실험적 연구 (Experimental Study on Slenderness Effects in Concrete-Filled Glass Fiber Reinforced Polymer Composite Columns)

  • 최석환;이성우;손기훈;이명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.585-590
    • /
    • 2001
  • The structural characteristics of concrete-filled glass fiber reinforced polymer tubes were studied. The concept of concrete-filled composite columns was introduced to overcome the corrosion problems associated with steel and concrete piles under severe environments. Other benefits of composite columns include low maintenance cost, high earthquake resistance, and long expected endurance period. Several experiments were conducted; 1) compression test for short-length composite columns, 2) uniaxial compression tests on a total of 7 columns with various slenderness ratios. Short-length columns give higher strength and ductility revealing high confinement action in concrete. Failure strengths, failure patterns, confinement effects, and stress-strains relations were analyzed for slender columns. Current study will show the feasibility of concrete-filled glass fiber reinforced polymer composite columns in corrosive environments, and will provide an experimental database for columns that are externally reinforced by multidirectional fibers.

  • PDF

고강도 콘크리트를 적용시킨 신형식 거더의 동적해석 및 안정성 평가 (Dynamic Analysis and Safety Estimation of New Type Girder Filled by High-Strength Concrete)

  • 최성우;이학;공정식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.213-216
    • /
    • 2008
  • 강관의 내부에 콘크리트를 충전한 구조인 콘크리트 충전 강관 구조(Concrete Filled Steel Tubular Structure, CFT 구조)는 강재와 콘크리트의 단점을 상호 보완하고 장점을 극대화 할 수 있다는 이점이 있다. 이와 같은 CFT 거더의 장점을 살리면서 CFT 거더보다 더 뛰어난 경제적, 구조적 효율성을 얻기 위해 기존의 CFT 구조에 아치 형식과 프리스트레스를 도입한 신형식 거더인 CFTA(Concrete-Filled and Tied Tubular Arch) 거더에 대한 연구가 현재 진행 중이다. CFTA 거더의 가장 큰 특징은 아치형상과 외부로 노출되어 있는 텐던인데 현재 연구과정에서 지적되고 있는 문제점 중의 하나는 외부로 노출된 텐던의 안전성에 관한 문제이다. 따라서 본 논문에서는 외부로 노출되어 있는 텐던에 대한 안전성 평가를 수행하였다. 또한, collision numerical simulation을 사용하여 동적 충돌에 대한 해석도 수행하였다. 모델의 해석을 위해 유한요소 해석 결과의 신뢰성이 높고, 타 연구에서도 많이 사용되고 있는 ABAQUS 6.5-1을 이용하였다.

  • PDF

초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과 (Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H))

  • 안종석;박진근;이길재;윤재연
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.