• 제목/요약/키워드: high strength of dairy wastewater

검색결과 3건 처리시간 0.017초

바실러스 미생물을 이용한 고농도 유가공 폐수처리에 있어서 유기물질과 영양염류의 동시제거에 대한 평가 (Evaluation for the simultaneous Removal of Organic Matters and Nutrients by the RBC and tapered Aeration Processes with Bacillus sp. for the high Strength of Dairy Wastewater)

  • 이상호
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.195-202
    • /
    • 2010
  • The evaluation of organic matters and nutrients removal was investigated for the synthetic wastewater and the high strength of dairy wastewater. Two different systems were performed for this research. System A composing of a single RBC with tapered aeration was fed with the synthetic wastewater for 74 days with 173L/day of influent, 200% of internal return and 100% of sludge return for the period 1 and 2. The feed conditions were maintained 346L/day of influent, 50% of internal return and sludge return for the period 3. The dairy wastewater was introduced to evaluate treatment efficiency for system B composing of dual RBCs and tapered aeration tanks for 50 days of experimental run time, in which hydraulic rates were maintained at the constant ratios of 346L/day, 50% of internal return and 50% of sludge return. The spiral string media made of nylon fibre was attached by Bacillus sp. in RBC for both systems. The specific area of string media was $1.4m^2$/m and biomass was maintained at the concentrations of 23g/m. The synthetic wastewater was supplied by 1,800mg/L of glucose, 500mg/L of $NH_4Cl$, and 500mg/L of $KH_2PO_4$ to system A. The dairy wastewater was supplied to system B from dairy production plant. The average influent concentrations were 1,334mg/L of BOD, 2,014mg/L of CODcr, 160mg/L of T-N, and 12mg/L of T-P in system A. The average influent concentrations of parameters were 1,006 mg/L for BOD, 1,875mg/L for $COD_{cr}$, 51.6mg/L for T-N and 8.9mg/L for T-P in system B. Results indicated that removal efficiencies of BOD and $COD_{cr}$ were more than 90% however, the removal efficiency of T-N was 87%, and that of T-P was 82% for system A. Removal efficiencies were 98.5% of BOD, 91.3% of nitrogen and 89% of phosphorus for system B. The removal efficiencies of organic matters, T-N and T-P were higher in system B than in system A. The effluent quality issued by the stringent national legislations for the discharge of the high strength of dairy products wastewater can be improved using sequential RBCsand tapered aeration reactors rather than a single RBC and tapered aeration reactors with Bacillus sp.

RBC와 점감포기조의 복합구성에 따른 유가공폐수 처리에 관한 연구 (Treatment of Dairy Wastewater by the Combination of RBC and tapered Aeration)

  • 이상호
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1733-1738
    • /
    • 2008
  • 고농도 유가공폐수의 유기물 및 질소, 인의 제거효율을 비교하기 위하여 두 개의 반응 시스템을 구성하였다. 하나는 하나의 RBC 반응조와 3단 점감포기조로 구성한 시스템이며 다른 하나는 RBC 반응조 2개를 연속으로 구성하고 3단 점감포기조로 구성한 시스템이다. 본 연구에 적용한 바실러스 미생물은 RBC의 끈상미생물접촉재에 부착하여 수행하였다. 각 시스템으로 유입되는 유가공폐수의 BOD 평균농도는 988mg/L, 1,046mg/L이었으며, 유출수 BOD 농도는 21.4mg/L, 15.9mg/L로 제거율은 97.8%, 98.5%의 결과를 보였다. RBC 단일공정 유입수의 평균 $COD_{cr}$ 농도는 1,837mg/L, 유출수는 53.0mg/L로 96.7%의 제거 효율을 보였으며 RBC 연속공정 유입수의 평균 $COD_{cr}$ 농도는 1,852mg/L, 유출수는 평균 27.8mg/L로 98.5%의 제거효율을 보였다. 유입수 T-N 분석결과 RBC 단일공정은 평균 51.9mg/L로 측정되었고, RBC 연속반응공정에서의 유입수 평균은 54.3mg/L이었으며, 유출수는 각각 6.6mg/L, 4.7mg/L로 87.2%, 91.3%의 제거효율을 보였다. T-P에 대한 RBC 단일공정과 RBC 연속공정에서의 분석 결과 유입수 평균농도는 각각 8.9mg/L, 9.1mg/L로 측정되었고, 유출수 농도는 1.6mg/L, 1.0mg/L로 T-P 제거율은 82%, 89%로 나타났다.

고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거 (Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter)

  • 성문성;장덕;서성철;정보림
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF