• 제목/요약/키워드: high spray

검색결과 1,573건 처리시간 0.025초

강체 선회유동 조건에서의 분무 분산 특성에 관한 연구 (Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl)

  • 이충훈
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

미세버블 디젤 연료의 분사율과 미시적 분무특성에 대한 연구 (Investigation on Injection Rate and Microscopic Spray Characteristics of Fine Bubble Diesel Fuel)

  • 진해론;이승우;김기현
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.15-20
    • /
    • 2020
  • This study aims to investigate injection rate and microscopic spray characteristics of diesel fuel containing fine air bubble (FBD). fine bubble was generated by cavitation theory using bubble generator. Fuel spray was injected into constant volume chamber and visualized by high speed camera. The injection rate data was acquired with bosch tube method. Injection rate of finebubble diesel was very similar with that of diesel. It showed slightly faster injection start by 5 ㎲ attributed to the low viscosity characteristics. In microscopic spray visualization, fine bubble diesel spray showed unsymmetric spray shape compared with diesel spray. It also showed very vigorous spray atomization performance during initial spray development. Improved atomization was also attributed to the low viscosity and surface tension of finebubble diesel fuel.

하천 돌망태 호안에 적용된 토목섬유보강토공법의 녹화 특성 (A Study for Characteristics of Geofiber Reinforced Soil System Practiced on Stone Gabion Bank of River)

  • 정대영;김재환;심상렬
    • 한국환경복원기술학회지
    • /
    • 제11권6호
    • /
    • pp.81-90
    • /
    • 2008
  • Recently, geofiber(polyester) reinforced soil was added on soil-seed mixture spray to control erosion and to improve vegetation growth on rocky slope sites. This research was conducted to compare vegetation effects and soil hardness on three types of soil-seed mixture spray on stone gabion river bank [A type : soil-seed mixture spray underlying 30cm thick sand with geofiber(geofiber reinforced soil system), B type : soil-seed mixture spray underlying 30cm thick sand without geofiber, C type : soil-seed mixture spray]. Evaluation were made concerning vegetation coverage, soil hardness and moisture content. The results of this study showed that A type system was effective for the growth of vegetation and soil hardness when compareed to B type and C type. A type and B type showed higher covering rate than C type on stone gabion river bank, and especially A type showed the highest covering rate. Soil hardness and water content were high on A type vegetation system compared to B type and C type. We noted that high soil hardness and high moisture content with geofiber(geofiber reinforced soil system) were effective both to control erosion from water current impact and to be high coverage and species of vegetation on stone gabion river bank.

가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향 (Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector)

  • 이창식;최수천;김민규;권상일
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

PistonCavity 형상에 따른 충돌분류의 분무거동 (The Behavior of Impinging Spray by Piston Cavity Geometry)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

분무액적과 벽의 상호작용에 대한 연구 (Study of Spray Droplet/Wall Interaction)

  • 양희천;유홍선;정연태
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구 (A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System)

  • 김세훈;박수한;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.

고압상태에서의 디젤연료분무의 연소 및 매연가스배출 특성 (Combustion and Emission Characteristics of Diesel Spray in High-Pressure Environment)

  • 권영동;김용모;김세원;박신배
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.18-28
    • /
    • 1997
  • The present study is mainly aiming at numerically analyzing the combustion and emission characteristics of the diesel spray in a high-pressure environment. Computations are peformed for the peak chamber pressure with range from 4.08 MPa to 162 MPa. Numerical results indicate that the pressure increase in combustion chamber significantly influences the mechanism for droplet dynamics and mixing characteristics, spray penetration autoignition, flame lift-on height and the propagation or fuel vapor and flame. By increasing the ratio or the ambient density to injected liquid density, the fuel-air mixing rates and the burning rates increase and the $NO_x/soot$ emission level decreases.

  • PDF

초고압 분사의 적정분사압력에 관한 연구 (A Study on Suitable Injection Pressure of Ultra High Pressure Injection System)

  • 정대용;박성진;김홍준;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.913-918
    • /
    • 2000
  • Spray and combustion characteristics were investigated to find suitable injection pressure by using ultra high pressure injection and single shot diesel combustion systems. As injection pressure was increased, spray penetration and spray angle were increased continuously until 2,000bar, but after this injection pressure region the rate of increase was decreased suddenly. Combustion characteristics were also enhanced until 2,000bar of injection pressure.

  • PDF

분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성 (LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection)

  • 정진영;오희창;배충식
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.