• 제목/요약/키워드: high resolution spectra

Search Result 266, Processing Time 0.031 seconds

Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

  • Clarke, Shaun D.;Hamel, Michael C.;Di fulvio, Angela;Pozzi, Sara A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1354-1357
    • /
    • 2017
  • Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for $^{252}Cf$ and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-of-flight kinematics can be used. With this system, energy spectra can also be obtained as a function of position. Spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.

Recalibrating virial black hole mass estimators

  • Park, Da-Woo;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • In understanding AGN physics, it is fundamental to determine black hole masses. Based on the gas kinematics of the broad-line region, black hole masses can be derived from the product of the width of the broad emission lines and the continuum/line luminosities. For a sample of 37 intermediate-luminosity AGN at z~0.4, we obtained high quality spectra (S/N~100) using the Low Resolution Imaging Spectrometer(LRIS) at the KECK telescope, in order to calibrate various black hole mass estimators based on the Mg II (2798A), the $H{\beta}$ (4861A), and the $H{\alpha}$ (6563$\bar{A}$) emission lines. Based on our multicomponent fitting analysis, we subtract continuum, FeII emission, and host galaxy starlight, reducing systematic errors in measuring emission line widths. Combining low S/N SDSS spectra with our high S/N keck spectra, we determine a set of ~30 black hole masses of the sample for each emission line. Then by comparing various sets of black hole masses, we internally calibrate each mass estimators and investigate uncertainties and limitations of each mass estimator.

  • PDF

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok;Cha, Hyung-Ki;Kim, Duk-Hyeon;Min, Ki-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.101-105
    • /
    • 2004
  • The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

Early Chemical Evolution of the Milky Way Revealed by Ultra Metal-Poor ([Fe/H] < -4.0) Stars

  • Jeong, MiJi;Lee, Young Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2019
  • Chemical abundance ratios of ultra metal-poor (UMP; [Fe/H] < -4.0) stars can provide important constraints on the early chemical enrichment of the Milky Way (MW), associated with the nucleosynthesis processes that occurred during the evolution of their progenitors, which are presumably the first generation of stars. Despite their importance, only about thirty UMP stars have been discovered thus far. In an effort to identify such stars additionally, we selected UMP candidates from low-resolution (R ~ 2000) spectra from the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST), and obtained with Gemini/GRACES high-resolution (R ~ 40,000) spectra of 15 UMP candidates. In this study, we present the results of the chemical abundance analysis of the UMP candidates. Furthermore, we compare the abundance patterns of our UMP stars with those of various metal-poor stars from literature to understand the early chemical evolution of the MW.

  • PDF

Calibrating black hole mass estimators using high quality Keck spectra

  • Park, Da-Woo;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2011
  • Black hole masses of Active Galactic Nuclei (AGN) are one of the most important parameters in AGN physics. Based on the virial assumption, black hole masses can be determined from the product of the width of the broad emission lines and the continuum/line luminosities. Using the Low Resolution Imaging Spectrometer(LRIS) at the Keck telescope, we obtained high quality spectra (S/N~100), covering 2300-5500A in the rest-frame, for a sample of 37 intermediate-luminosity AGN at z~0.4, in order to calibrate various black hole mass estimators based on the Mg II (2798A) and the Hbeta (4861A) emission lines. After subtracting continuum and complex FeII emission under Mg II and Hbeta, we fit the broad emission lines using high order Guass-Hermite models to best constrain the profile and the width of the emission lines. Combining the SDSS spectra covering Halpha emission line with the Keck spectra, we determine a set of 6 black hole masses for each object, based on the line width (MgII, Hbeta, and Halpha) and the luminosity (LMgII, LHbeta, LHalpha, L3000, L5100), and calibrate each black hole mass estimator. We will present uncertainties and limitations of each mass estimator.

  • PDF

Measuring Homopause Temperatures of Jupiter, Saturn, and Titan via Three-micron Emission Spectra of CH4

  • Kim, Sang-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.48.3-49
    • /
    • 2016
  • Current high-resolution IR spectroscopy at ground-based observatories made it possible to observe $3-{\mu}m\;CH_4$ emission lines from the atmospheres of Jupiter, Saturn, and Titan through narrow atmospheric windows avoiding the counterparts of telluric $CH_4$ absorptions if proper Doppler shifts betwen Earth and these planetary objects are provided. We are also expecting low-resolution (R~300) infrared spectra of Jupiter from the upcoming observations by JUNO's infrared $2-5{\mu}m$ spectrograph during the encounter with Jupiter approximately starting from July 4, 2016. Although the spectral resolution is not enough to resolve the $3-{\mu}m$ P, Q, R branch lines of CH4, the gross envelopes of the P, Q, R branches should yield information on rotational temperatures. The rotational temperatures are useful because theycan be regarded as local temperatures, as discussed by Kim et al. (2014). Since the $3-{\mu}m\;CH_4$ emission is mostly formed at micro-bar pressure levels, the derived rotational temperatures represent the local temperatures near the hompause of Jupiter. We discuss possible sciences from the derived homopause temperatures in the auroral and non-auroral regions of Jupiter.

  • PDF

ORFEUS OBSERVATIONS OF ULTRAVIOLET EXCITED HIGH-J MOLECULAR HYDROGEN

  • Lee, Dae-Hee;Dixon, W. Van Dyke;Min, Kyoung-Wook;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.6
    • /
    • pp.145-153
    • /
    • 2009
  • We present measurements of diffuse interstellar $H_2$ absorption lines in the continuum spectra of 10 early-type stars. The data were observed with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS) of the ORFEUS telescope on board the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The spectra extend from the interstellar cutoff at 912 $\AA$ to about 1200 $\AA$ with a resolution of ~ 3000 and statistical signal-to-noise ratios between 10 and 65. Adopting Doppler broadening velocities from high-resolution optical observations, we obtain the $H_2$ column densities of rotational levels J" = 0 through 5 for each line of sight. The kinetic temperatures derived from J" = 0 and 1 states show a small variation around the mean value of 80 K, except for the component toward HD 219188, which has a temperature of 211 K. Based on a synthetic interstellar cloud model described in our previous work, we derive the incident UV intensity IUV and the hydrogen density $n_H$ of the observed components to be -0.4 $\leq$ log $I_{UV}\leq2.2$ and $6.3{\leq}n_H2500cm^{-3}$, respectively.