• 제목/요약/키워드: high redshift

검색결과 206건 처리시간 0.022초

Selection of High Redshift Quasars with Multi-wavelength Data

  • Jeon, Yiseul
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.28.2-28.2
    • /
    • 2015
  • High redshift quasars (z > 5) hold keys to understanding the evolution of the universe in its early stage. Yet, the number of high redshift quasars uncovered from previous studies is relatively small (70 or so), and are concentrated mostly in a limited redshift range (z ~ 6). To understand the early mass growth of supermassive black holes and the final stage of the cosmic reionization, it is important to find a statistically meaningful sample of quasars with various physical properties. Here we present a survey for high redshift quasars at 5 < z < 7. Through color selection techniques using multi-wavelength data, we found quasar candidates and carried out imaging follow-up observations to reduce contaminants. After optical spectroscopy, we discovered eight new quasars. We obtained near-infrared spectra for 3 of these 8 quasars, measured their physical properties such as black hole masses and Eddington ratios, and found that the high redshift quasars we discovered are growing via accretion more vigorous than those of their lower redshift counterparts. We estimated the quasar number densities from our discoveries and compared them to those expected from the quasar luminosity functions in literature. In contrast to the observed number density of quasars at z ~ 5, which agrees with literature, the observed number density at z ~ 7 shows values lower than what is expected, even after considering an extrapolated number density evolution. We conclude that the quasar number density at z ~ 7 declines toward higher redshift, more steeply than the empirically expected evolution.

  • PDF

A New Selection Strategy of High Redshift Quasars: Medium-Band Observation with SQUEAN

  • Jeon, Yiseul;Im, Myungshin;Pak, Soojong
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.78.3-78.3
    • /
    • 2015
  • About 70 high redshift quasars with $z{\geq}5$ have been discovered through combinations of standard broad-band filters to distinguish them from contaminating sources. However, among the discovered quasars so far, there is a redshift gap at $5{\leq}z{\leq}6$ due to the limitation of traditional filter sets and selection techniques. To understand the early mass growth of supermassive black holes and the final stage of the cosmic reionization, it is important to find a statistically meaningful sample of quasars with various physical properties. Here we suggest a new selection technique of high redshift quasars using medium-band filters: nine filters with bandwidths of 50nm and central wavelengths from 625 to 1025nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with R~15. We installed these filters to SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1m telescope at McDonald Observatory, and conducted test observations of known high redshift quasars at $4.7{\leq}z{\leq}6.1$ and also dwarf stars for comparison. We found differences in SED shapes between high redshift quasars and dwarf stars, determined their locations on color-color diagrams, and demonstrated that the medium-band filters can enhance the efficiency of selecting robust quasar candidates in this redshift range. In this poster, we propose an effective selection method of high redshift quasars using these medium-band filters and discuss its effect on our high redshift quasar survey.

  • PDF

High Redshift Quasar Survey

  • Jeon, Yiseul;Im, Myungshin
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.69.1-69.1
    • /
    • 2013
  • We describe a survey of quasars in the early universe beyond z=5, which is one of the main sciences of the Infrared Medium-deep Survey (IMS) performed by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data such as SDSS, CFHTLS, UKIDSS, and SWIRE, which provide deep images over wide areas sufficient enough for searching high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope (UKIRT) with a depth of ~23 AB and survey area of ~100 $deg^2$, which makes IMS the most suitable survey for finding high redshift quasars at z~7. Also for the quasar candidates at z~5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN), which are efficient for selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable to the specific redshift ranges, which can reduce the contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of super massive black holes since z~7. Also by expanding the quasar sample at 5

  • PDF

Constraining Physical Properties of High-redshift Galaxies : Effects of Star-formation Histories

  • 이성국
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Constraining physical (or stellar population) properties - such as stellar mass, star-formation rate, stellar population age, and dust-extinction - of galaxies from observation is crucial in the study of galaxy evolution. This is very challenging especially for high-redshift galaxies, and a widely-used method to estimate physical properties of high-redshift galaxies is to compare their photometric spectral energy distributions (SEDs) to spectral templates from stellar population synthesis models. I will show that the SED-fitting results of high-redshift galaxies are strongly dependent on the assumed forms of star-formation histories. I will also present the results of SED-fitting analysis of observed Lyman-break galaxies which show that parametric models with gradually increasing star-formation histories provide better estimates of physical parameters of high-redshift (z>3) star-forming galaxies than traditionally-used exponentially declining star-formation histories. This result is also consistent with the predictions from the modern galaxy formation models.

  • PDF

HIGH REDSHIFT QUASAR SURVEY WITH IMS

  • JEON, YISEUL;IM, MYUNGSHIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.405-407
    • /
    • 2015
  • We describe a survey of quasars in the early universe, beyond z ~ 5, which is one of the main science goals of the Infrared Medium-deep Survey (IMS) conducted by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data from SDSS, CFHTLS, UKIDSS, WISE, and SWIRE, which provide deep images over wide areas suitable for searching for high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope with a depth of ~23 AB mag and survey area of ${\sim}120deg^2$, which makes IMS a suitable survey for finding faint, high redshift quasars at z ~ 7. In addition, for the quasar candidates at z ~ 5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN) on the 2.1m telescope at McDonald Observatory, which has a custom-designed filter set installed to enhance the efficiency of selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable for the specific redshift ranges, which can reduce contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of supermassive black holes since z ~ 7. By expanding the quasar sample at 5 < z < 7, the final stage of the hydrogen reionization in the intergalactic medium (IGM) can also be fully understood. Moreover, we can make useful constraints on the quasar luminosity function to study the contribution of quasars to the IGM reionization.

Quantitative Morphology of High Redshift Galaxies Using GALEX Ultraviolet Images of Nearby Galaxies

  • 염범석;이수창;김영광;김석;이영대
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.73.1-73.1
    • /
    • 2011
  • An understanding of the ultraviolet (UV) properties of nearby galaxies is essential for interpreting images of high redshift systems. In this respect, the prediction of optical-band morphologies at high redshifts requires UV images of local galaxies with various morphologies. We present the simulated optical images of galaxies at high redshifts using diverse and high-quality UV images of nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX). We measured CAS (concentration, asymmetry, clumpiness) as well as Gini/M20 parameters of galaxies at near-ultraviolet (NUV) and simulated optical images to quantify effects of redshift on the appearance of distant stellar systems. We also discuss the change of morphological parameters with redshift.

  • PDF

ENVIRONMENTAL DEPENDENCE OF STELLAR POPULATION PROPERTIES OF HIGH-REDSHIFT GALAXIES

  • LEE, SEONG-KOOK;IM, MYUNGSHIN;KIM, JAE-WOO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.413-415
    • /
    • 2015
  • How galaxy evolution differs in different environments is one of the intriguing questions in the study of structure formation. While galaxy properties are clearly distinguished in different environments in the local universe, it is still an open issue what causes this environmental dependence of various galaxy properties. To address this question, in this work, we investigate the build-up of passive galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing on its dependence on galaxy environment. In the UKIDSS/Ultra Deep Survey (UDS) field, we identify high-redshift galaxy cluster candidates within this redshift range. Then, using deep optical and near-infrared data from Subaru and UKIRT available in this field, we analyze and compare the stellar population properties of galaxies in the clusters and in the field. Our results show that the environmental effect on galaxy star-formation properties is a strong function of redshift as well as stellar mass - in the sense that (1) the effect becomes significant at small redshift, and (2) it is stronger for low-mass ($M_{\ast}<10^{10}M_{\odot}$) galaxies. We have also found that galaxy stellar mass plays a more significant role in determining their star-formation property - i.e., whether they are forming stars actively or not - than their environment throughout the redshift range.

Chemically young AGNs at high redshift

  • Shin, Jaejin;Woo, Jong-Hak;Nagao, Tohru
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.49.3-50
    • /
    • 2017
  • Metallicity is one of the most important properties in understanding galaxy evolution. However, measuring metallicity is limited to low redshift (z<3.5) due to the faintness of the metallicity indicators in normal galaxies. For high redshift universe, active galactic nuclei (AGN) can be used to constrain the host galaxy metallicity. Previous studies investigated AGN metallicity using emission line flux ratios (i.e., NV/CIV and FeII/MgII), finding no evolution up to z~6. Those results might be due to selection effect since previous studies are based on very luminous AGNs. The observed luminosity-metallicity relation of AGNs (e.g., Nagao et al. 2006) suggests that luminous AGNs may be already matured at the observed epoch. Considering the luminosity-metallicty relation, we focused on low luminosity AGNs to find young AGNs (i.e., low metallicity). Through the Gemini/GNIRS observation in 2012A and 2015A (K-GMT GN-2015A-Q-203 PI: Shin, J.), we obtained the Gemini/GNIRS data for 7 high redshift AGNs (3.0

  • PDF

GRB 140304A at z=5.283: Implications on the high redshift universe and the observed flaring activities

  • Jeong, Soomin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.38.1-38.1
    • /
    • 2016
  • Gamma ray burst, the most brightest explosion phenomena in the current universe is well suited for study of high redshift universe. We report the afterglow multi-wavelength observation and GTC spectroscopy follow up of GRB 140304A which was exploded at z=5.283. The spectrum was shown damped Lyman alpha features and a series of absorption lines S, Si, SiII*, Oi, CII, CII*, SiIV are clearly detected at common redshift. Clear optical flares are detected when X-ray flare happened and a possible gamma-ray excess also. At this conference, we report on implications for the GRB host and environments using its absorption features which place the results in context to other well studied high redshift GRBs and studies about the ejecta using its observed flaring activities.

  • PDF

A tale of two cities: Two galaxy clusters at cosmic noon

  • Lee, Seong-Kook;Im, Myungshin;Park, Bomi;Hyun, Minhee;Paek, Insu
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.42.3-43
    • /
    • 2021
  • At high redshift, unlike local, many galaxy clusters are still at their stages of building. Likewise, they show a wide range in their star formation properties: some are still forming stars actively unlike their local counterparts, while others have very low level of star formation already. Here we report the two high-redshift (z~1) galaxy clusters, confirmed via Magellan MOS observation. While existing at similar redshift and having similar mass, these two clusters show very different quiescent galaxy fraction. The origin of this difference is investigated, and will be presented in the presentation.

  • PDF