• Title/Summary/Keyword: high rate of rising of anode current (di/dt)

Search Result 1, Processing Time 0.014 seconds

Human body model electrostatic discharge tester using metal oxide semiconductor-controlled thyristors

  • Dong Yun Jung;Kun Sik Park;Sang In Kim;Sungkyu Kwon;Doo Hyung Cho;Hyun Gyu Jang;Jongil Won;Jong-Won Lim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.543-550
    • /
    • 2023
  • Electrostatic discharge (ESD) testing for human body model tests is an essential part of the reliability evaluation of electronic/electrical devices and components. However, global environmental concerns have called for the need to replace the mercury-wetted relay switches, which have been used in ESD testers. Therefore, herein, we propose an ESD tester using metal oxide semiconductor-controlled thyristor (MCT) devices with a significantly higher rising rate of anode current (di/dt) characteristics. These MCTs, which have a breakdown voltage beyond 3000 V, were developed through an in-house foundry. As a replacement for the existing mercury relays, the proposed ESD tester with the developed MCT satisfies all the requirements stipulated in the JS-001 standard for conditions at or below 2000 V. Moreover, unlike traditional relays, the proposed ESD tester does not generate resonance; therefore, no additional circuitry is required for resonant removal. To the best of our knowledge, the proposed ESD tester is the first study to meet the JS-001 specification by applying a new switch instead of an existing mercury-wetted relay.