• 제목/요약/키워드: high pressure water injection

검색결과 111건 처리시간 0.025초

ROSA/LSTF test and RELAP5 code analyses on PWR steam generator tube rupture accident with recovery actions

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.981-988
    • /
    • 2018
  • An experiment was performed for the OECD/NEA ROSA-2 Project with the large-scale test facility (LSTF), which simulated a steam generator tube rupture (SGTR) accident due to a double-ended guillotine break of one of steam generator (SG) U-tubes with operator recovery actions in a pressurized water reactor. The relief valve of broken SG opened three times after the start of intact SG secondary-side depressurization as the recovery action. Multi-dimensional phenomena specific to the SGTR accident appeared such as significant thermal stratification in a cold leg in broken loop especially during the operation of high-pressure injection (HPI) system. The RELAP5/MOD3.3 code overpredicted the broken SG secondary-side pressure after the start of the intact SG secondary-side depressurization, and failed to calculate the cold leg fluid temperature in broken loop. The combination of the number of the ruptured SG tubes and the HPI system operation difference was found to significantly affect the primary and SG secondary-side pressures through sensitivity analyses with the RELAP5 code.

고압분위기에서 충돌제트로 형성되는 액막의 분열특성 (Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments)

  • 정기훈;길태옥;임병직;윤영빈
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Evaluation of Effectiveness of Vacuum Oral Cleaner Developed for Patients with Limited Mobility

  • Lee, Jae-Hyun;Jung, Ki-Won;Kim, Hee-Kyung;Koo, Ki-Tae;Kim, Sung-Hun
    • 대한치과의사협회지
    • /
    • 제54권12호
    • /
    • pp.1035-1044
    • /
    • 2016
  • Purpose : The purpose of this study was to compare the plaque removal effects of vacuum oral cleaner developed for the patients with limited mobility with those of manual toothbrushes and high pressure injection oral cleaner (dental water jet). Meterials and methods : Thirty human subjects were measured with Patient Hygiene Performance index (PHP index) and O'Leary index before and after the use of toothbrush, high pressure injection oral cleaner and vacuum oral cleaner. These three different oral hygiene methods were conducted with seven-day intermittence. Then the statistical analysis was carried out to define plaque removal rate of three different oral hygiene methods (${\alpha}=.05$). Results : According to the efficacy analysis of plaque removal before and after the oral cleaning using each of three methods, significant reduction in plaque after the treatment compared to the previous state when using toothbrush, high pressure injection oral cleaner, and vacuum oral cleaner was observed (P < 0.001). PHP index of tooth brushing was higher than that of the high pressure injection oral cleaner, while PHP index of vacuum oral cleaner did not show significant difference from either of the other two methods. There was no significance difference in O'Leary index among the three methods. Conclusion : Effect of plaque removal using the vacuum oral cleaner is comparable to that of manual tooth brush or high pressure injection oral cleaner, so it will be helpful for self-oral hygiene care of the patients with limited mobility.

  • PDF

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

수치 해석을 이용한 감압 회류 수조 설계 (Depressurized Circulating Water Channel Design Using CFD)

  • 부경태;조희상;신수철
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석 (Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection)

  • 고이 잔나릿;윤찬영
    • 한국지반공학회논문집
    • /
    • 제33권11호
    • /
    • pp.45-57
    • /
    • 2017
  • 연약지반의 압밀거동은 온도변화에 의하여 영향을 받는다. 연약 점토지반 내에 온도가 증가하면 간극수압이 증가하고 간극수압의 소산은 부피와 간극비를 감소시킨다. 또한 높은 온도는 간극유체의 점성을 감소시키므로 압밀속도가 빨라진다. 본 연구에서는 온도가 압밀침하량, 압밀시간, 간극수압과 같은 압밀거동에 미치는 영향을 분석하였으며, 이를 위하여 수리역학적(HM) 및 열수리역학적(THM) 거동에 대한 수치해석을 수행하였다. 열주입과 샌드드레인을 동시에 고려하였으며, 온도 변화 및 샌드드레인 직경 변화를 고려하여 해석을 수행하였다. 해석결과, 시료내부의 온도는 열원의 온도와 샌드드레인의 직경 증가에 따라 증가하는 것으로 나타났다. 또한 열주입은 과잉간극수압을 증가시키고 그에 따라 과압밀 영역에서는 추가적인 침하량을 유발하고 정규압밀 영역에서는 압밀시간을 감소시키는 것으로 나타났다.

분말활성탄(PAC)+막여과(MF) 조합공정에서 PAC의 영향 평가 (Assesment of Powdered Activated Carbon Effect on PAC+MF Hybrid Membrane Process)

  • 김병수;왕창근;임재림;김충환
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.517-522
    • /
    • 2008
  • This study aims at an assessment of the effectiveness of taste & odor removal and transmembrane pressure changes in a pilot membrane plant(500m3/day) by adding PAC to MF process, and at providing a basis for applying it to the advanced water treatment process. The transmembrane pressure showed, in low turbidity of raw water, a tendency to decrease when PAC was injected at the Flux of 1, $1.5m^3/m^2{\cdot}d$, while it increased in high Flux($1.5m^3/m^2{\cdot}d$) in high turbidity of raw water. in addtion, it is shown that the fouling could be reduced more when PAC is injected together with appropriate amount of coagulant, than when PAC is solely injected. Taste & Odor-causing 2-MIB may not be detected in membrane filtered water, if the amount of PAC injection is increased in accordance with the increasing concentration of 2-MIB. Hence, PAC injection, as a pre-treatment process in MF membrane filtering, is supposed to be a suitable process for reducing fouling as well as for improvement effectiveness of taste & odor treatment.