• Title/Summary/Keyword: high pressure natural gas pipeline

Search Result 26, Processing Time 0.02 seconds

A Study on the Microstructure and Mechanical Properties for the Weldment with Variation of Welding Process of the API 5L-B42 Pipeline for Natural Gas Transmission (천연가스 수송용 API 5L-X42 강관의 용접방법에따른 용접부의 미세조직과 기계적 특성에 관한 연구)

  • Baek Jong-Hyun;Kim Cheol-Man;Kim Young-Pyo;Kim Woo-Sik
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.33-38
    • /
    • 1997
  • Demand of the clean and convenient natural gas has continuously increased with recognizing of the environment problem since liquefied natural gas was introduced in Korea. Clean fuel natural gas was supplied to each city through high tensile strength pipeline connected by welding. Grades of pipeline were divided into the high and middle pressure according to supply pressure. Pipeline was welded mainly SMA welding process due to its easy handling, the other welding process was adopted according to the constructing condition. We were examined on the microstructure variation and mechanical properties of weld metal for high pressure pipeline, API 5L X-42.

  • PDF

A Study on the Consequences of Underground High Pressure Natural Gas Pipelines (고압 매몰 천연가스 배관 누출사고 피해해석에 관한 연구)

  • Lee, Seungkuk;Shin, Hun Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • Due to rapid rise of consuming rate for natural gas, installation and operation of high pressure natural gas pipeline is inevitable for high rate of gas transportation. Accordingly incidents on the underground high pressure natural gas pipeline come from various reasons will lead to massive release of natural gas and gas dispersion in the air. Further, fire and explosion from ignition of released gas may cause large damage. This study is for release rate, dispersion and flash fire of natural gas to establish a safety management system, setting emergency plan and safety distance.

A Study on Failure Frequency Model for Risk Analysis of Natural Gas Pipeline with Comparison of Overseas Failure Data (국외 천연가스 배관 사고 빈도 비교 및 분석 모형에 관한 연구)

  • Oh, Shin-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2014
  • In this study, the overseas failure frequency data of the high-pressure gas pipeline were investigated to apply QRA of high-pressure gas pipeline. The typical overseas failure frequency data of high-pressure gas pipeline are DOT of United States, EGIG of Europe, and UKOPA of United Kingdom (UK). Comparative analysis of these data was shown that EGIG data was suitable for the situation in Korea. In order to apply QRA of high-pressure gas pipeline, non-linear regression analysis using the failure frequency data in the report of EGIG 8th was performed. In the future, intensive researches are required for the external interference because about 50% of the failure frequency of all incidents is the external interference, and for combining of domestic and overseas data.

Establishment of natural gas high-pressure pipeline network model in Korea (천연가스 전국 고압 배관망 모델 수립)

  • Park Young;Lee Young Chul;Lee Jeong Hwan;Cho Byoung Hak;Lim Jong Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.43-51
    • /
    • 2001
  • ln this study, a natural gas pipeline network model was established using STONER. First a map of natural gas pipeline network was drawn on STONER and then the length and diameter of the pipe were inputted. And as the specific gravity of gas flowing in the pipeline which is the value of natural gas was inputted. Finally in order to decide the pipeline variables and gas temperature, through the verification with observed real data, the possible error was minimized. For the verification, the pipeline variables and gas temperature were assumed and the pipeline network analysis was accomplished with real demand data. The square deviation of analysed pressure from observed pressure was calculated and the minimum case was selected for the optimum pipeline variables and gas temperature. Thus a proper natural gas pipeline network model for real network was established.

  • PDF

A Study on the Microstructure and Mechanical Properties for the Weldment with Variation of Welding Process of the API 5L-X42 Pipeline for Natural Gas Transmission. (천연가스 수송용 API 5L-X42 강관의 용접방법에 따른 용접부의 미세조직과 기계적 특성에 관한 연구)

  • Baek Jong-Hyun;Kim Cheol-Man;Kim Young-Pyo;Kim Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.34-39
    • /
    • 1998
  • Demand of the clean and convenient natural gas has continuously increased with recognizing of the environment problem since liquefied natural gas was introduced in Korea. Clean fuel natural gas was supplied to each city through high tensile strength pipeline connected by welding. Grades of pipeline were divided into the high and middle pressure according to supply pressure. Pipeline was welded mainly SMA welding process due to its easy handling, the other welding process was adopted according to the constructing condition. We were examined on the microstructure variation and mechanical properties of weld metal for high pressure pipeline, API 5L X-42.

  • PDF

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

Comparative Analysis on the Causes and Frequency of Recent Gas Pipelines Accidents in Major Overseas Countries (해외 주요국에서의 최근 가스배관 사고의 원인과 빈도의 비교 분석)

  • Kim, Dae-Woong;Bae, Kyung-Oh;Shin, Hyung-Seop;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • Natural gas is an explosive fluid and can cause severe human/material damage when buried high-pressure pipeline is failure, and there have been reported cases of considerable human life damage to actual buried pipeline failure. In domestic cases, the length and duration of pipeline operating are short due to rapid growth. Therefore, it is a fact that the establishment of effective accident data is insufficient for the cause of the accident. In order to systematically construct an accident database, the operation history of natural gas pipeline is longer than domestic, and the cause and frequency analysis of recent natural gas pipeline related accidents occurred in overseas major countries with a long pipeline network was conducted. Then, after grasping the trend of occurrence frequency by incident cause, we tried to establish the foundation for securing the stability of the domestic high-pressure gas transport pipeline network.

A Study on Minimum Separation Distance for Aboveground High-pressure Natural Gas Pipelines (지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.225-231
    • /
    • 2019
  • In Korea, the minimum separation distance between aboveground high-pressure natural gas pipeline and buildings is regulated by Korea gas safety (KGS) code. In this paper, The technical backgrounds for the revision of the KGS code related to the minimum separation distance was presented. A consequence-based approach was adopted to determine the minimum separation distance by a reasonable accident scenario, which was a jet fire caused by the rupture of one inch branch line attached the gas pipeline. Where, the higher thermal radiation flux threshold was selected for workers in industrial area than for people in non-industrial area, because the workers in industrial area were able to escape in a shorter time than the people in public. As result of consequence analysis for the accident scenario, we suggested the KGS code revision that the minimum separation distances between high-pressure natural gas pipeline installed above ground and buildings should be 30 meter in non-industrial area and 15 meter in industrial area. The revised code was accepted by the committee of the KGS code and now in effect.

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.