• Title/Summary/Keyword: high pressure inactivation

Search Result 35, Processing Time 0.027 seconds

Continuous High Pressure Carbon Dioxide Processing of Mandarin Juice

  • Lim, Sang-Bin;Yagiz, Yavuz;Balaban, Murat O.
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Mandarin juice was processed using a continuous high pressure $CO_2$ system. Response surface methodology was used to investigate the effects of the processing parameters such as temperature, pressure, residence time, and %(w/w) ratio of $CO_2$ to juice on total aerobic count (TAC), pectinesterase (PE) activity, cloud level, $^{\circ}Brix$, pH, and titratable acidity (TA) of the juices. Maximum log reduction (3.47) of TAC was observed at $35^{\circ}C$, 41.1 MPa, 9 min residence time, and 7% $CO_2$. PE was inactivated by 7-51%. The cloud was not only retained but was also enhanced by 38%. Lightness and yellowness increased, and redness decreased. The processing temperature and % $CO_2$/juice ratio significantly affected high pressure $CO_2$ processing of the juice in terms of pasteurization, PE inactivation, cloud increase, and color change. The $^{\circ}Brix$, pH, and TA before and after treatment remained unchanged.

Combined Treatment of High Hydrostatic Pressure and Cationic Surfactant Washing to Inactivate Listeria monocytogenes on Fresh-Cut Broccoli

  • Woo, Hyuk-Je;Park, Jun-Beom;Kang, Ji-Hoon;Chun, Ho Hyun;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1240-1247
    • /
    • 2019
  • This study was conducted to examine the inactivation effect of the combined treatment of high hydrostatic pressure (HHP; 400 MPa for 1, 3, and 5 min) and cationic surfactant washing (0.05% benzethonium chloride, BEC) against Listeria monocytogenes inoculated on fresh-cut broccoli (FCB). Washing with BEC at concentrations exceeding 0.05% resulted in 2.3 log-reduction of L. monocytogenes counts on FCB, whereas HHP treatment had approximately 5.5-5.6 log-reductions regardless of the treatment time. Scanning electron microscopy corroborated microbial enumeration, revealing that the combined treatment was more effective in removing L. monocytogenes from FCB than individual treatment with HHP or BEC. Color and total glucosinolate content were maintained after the combined treatment, although the hardness of the FCB slightly decreased. The results clearly suggest that the combined treatment of HHP and BEC washing has potential value as a new sanitization method to improve the microbial safety of FCB.

Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats

  • Hyung Kyu Kim;Jiyeon Jun;Tae Wan Kim;Dong-ho Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.481-491
    • /
    • 2023
  • The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.

Modeling the Chemical Kinetics of Atmospheric Plasma

  • Kim, Ho-Yeong;Lee, Hyeon-U;Kim, Gyu-Cheon;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.270-270
    • /
    • 2012
  • Low temperature atmospheric pressure plasmas (APPs) have been known to be effective for living cell inactivation in the water [1]. Many earlier research found that pH level of the solution was changed from neutral to acidic after plasma treatment. The importance of the effect of acidity of the solution for cell treatments has already been reported by many experiments. In addition, several studies have demonstrated that the addition of a small amount of oxygen to pure helium results in higher sterilization efficiency of APPs [2]. However, it is not clear yet which species are key factors for the cell treatment. To find key factors, we used GMoo simulation. We elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation with using GMoo simulation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that cause chest pain and damage lung tissue when the density is very high. H2O2, HO2 and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  • PDF

Clostridium botulinum and Its Control in Low-Acid Canned Foods

  • Reddy, N. Rukma;Skinner, Guy E.;Oh, Sang-Suk
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.499-505
    • /
    • 2006
  • Clostridium botulinum spores are widely distributed in nature. Type A and proteolytic type B bacteria produce heat-resistant spores that are primarily involved in most of the food-borne botulism outbreaks associated with low-acid canned foods. Food-borne botulism results from the consumption of food in which C. botulinum has grown and produced neurotoxin. Growth and toxin production of type A and proteolytic type B in canned foods can be prevented by the use of thermal sterilization alone or in combination with salt and nitrite. The hazardousness of C. botulinum in low-acid canned foods can also be reduced by preventing post-process contamination and introducing hazard analysis and critical control point (HACCP) practices during production. Effectiveness of non-thermal technologies such as high pressure processing with elevated process temperatures on inactivation of spores of C. botulinum will be discussed.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Disinfection Efficiency of Medium Pressure UV Lamp on Major Bacteria in Sand Filtered Water (사여과수에 존재하는 우점세균의 중압 자외선 램프 소독능)

  • Ahn, Seoung-Koo;Yang, Yoon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1141-1146
    • /
    • 2010
  • Isolated the heterotrophic aerobic bacteria in sandfiltered water on NA and TSBA solid medium, selected 8 dominant species and identified by Sherlock System. Each samples are irradiated 0, 5, 16, 40 and $60\;mJ/cm^2$ using on CBD (Collimated Beam Device) Medium Pressure UV lamp after these identified bacterium did liquid culture how to make $10^6{\sim}10^7\;cells/mL$ suspended in dilution water. Then cultured bacteria are estimated inactivation rate on plate media. Identified Gram positive group are Bacillus Subtilus, Bacillus megaterium, Rhodococcus erythropolis and Microbacterium laevaniformans; Gram negative group are Pseudomonas vesicularis, Pseudomonas pseudoflava, Alcaligenes paradoxus and Zooglea ramigera. These isolation of bacterium are more stronger reference strain and high resistance of MP UV irradiation, Besides Gram negative bacterium are more sensitive Gram positive bacterium on MP UV dose. Now we are estimating to $60{\sim}100\;mJ/cm^2$ MP UV dose for efficient disinfection in water treatment plant.

Changes in Microbial Counts, Enzyme Activity and Quality of Foxtail Millet Yakju Treated with High Hydrostatic Pressure During Storage (초고압 처리한 좁쌀약주의 저장 중 미생물수, 효소활성 및 품질변화)

  • 임상빈;좌미경;목철균;박영서
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.576-581
    • /
    • 2004
  • Foxtail Millet Yakju were treated with heat ($65^{\circ}C$/15 min) or high hydrostatic pressure ($25^{\circ}C$ (RT) and $65^{\circ}C$ (HT)/400 MPa/10 min), and stored for 64 days at l$0^{\circ}C$, $25^{\circ}C$ and 37$^{\circ}C$. Changes in microbial counts, enzyme activity and quality of Yakju during storage were measured. Total viable cells were about 10$^2$ CFU/mL, and remained almost constant during storage at l$0^{\circ}C$ and $25^{\circ}C$, while decreased significantly at 37$^{\circ}C$, and undetected after 55 days of storage in heat- and pressure(RT)-treated, but after 25 days in pressure(HT)-treated Yakju. Lactic acid bacteria and yeast in heat- and pressure-treated Yakju were not detected during storage. The relative activities of a -amylase in heat- and pressure(RT)-treated were more than 100%, while those in pressure(HT)-treated were less than 40% during storage of 64 days at l$0^{\circ}C$. However, at $25^{\circ}C$ and 37$^{\circ}C$ the relative activities in untreated and pressure(RT)-treated were decreased greatly and then reached at the point of the activities of heat- and pressure(HT)-treated. The relative activities of glucoamylase in untreated and pressure(RT)-treated were decreased as the increase of the storage temperature during storage, while those in heat- and pressure(HT)-treated increased slightly as the increase of storage period at 1$0^{\circ}C$ and $25^{\circ}C$, and had no change at 37$^{\circ}C$. pH in heat- and pressure-treated had almost no change. Turbidity and reducing sugar in heat- and pressure-treated increased as the increase of storage temperature during storage.

Effect of High Pressure Processing on the Rancidity of Yeonhaeju Soybean (Bazaz) Powder during Storage (초고압처리에 의한 연해주 대두분말의 저장기한 중의 산패도 변화)

  • Lee, Soo-Bock;Uhm, Byung-Hyun;Yoon, Won-Byong
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.209-213
    • /
    • 2011
  • Changes of rancidity of soybean powder from Yeonhaeju (Bazaz) during storage were evaluated by TBA, and compared with those of Korean soybean (Baektae). Lipoxygenase (LOX) in the soybean powder was inactivated by high pressure processing (HPP) to increase the stability of soybean powder during storage. The level of inactivation of LOX was measured by spectrophotometer at 234 nm. HPP decreased the activity of LOX in the soybean powder of Baektae, compared to that of the control (i.e., soybean powder without HPP treatment) of Baektae, while TBA values of both HPP treated Baektae and the control were increased up to 24 days of storage. However, in case of Bazas, both LOX activity TBA values decreased after HPP treatment, compared to those of controls. The antioxidant compounds in both soybeans were measured and quantitatively evaluated by on-line $ABTS^{+}$ assay. Based on the trolox equivalent (TE) value at the retention time 38.2 and 40.1 min, the antioxidant components in Bazaz were higher than that of Baektae. It might indicate that relatively lower TBA values of HPP treated Bazaz was due to lower LOX activity as well as higher antioxidant compounds in the species.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF