• 제목/요약/키워드: high pressure inactivation

검색결과 35건 처리시간 0.032초

Continuous High Pressure Carbon Dioxide Processing of Mandarin Juice

  • Lim, Sang-Bin;Yagiz, Yavuz;Balaban, Murat O.
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.13-18
    • /
    • 2006
  • Mandarin juice was processed using a continuous high pressure $CO_2$ system. Response surface methodology was used to investigate the effects of the processing parameters such as temperature, pressure, residence time, and %(w/w) ratio of $CO_2$ to juice on total aerobic count (TAC), pectinesterase (PE) activity, cloud level, $^{\circ}Brix$, pH, and titratable acidity (TA) of the juices. Maximum log reduction (3.47) of TAC was observed at $35^{\circ}C$, 41.1 MPa, 9 min residence time, and 7% $CO_2$. PE was inactivated by 7-51%. The cloud was not only retained but was also enhanced by 38%. Lightness and yellowness increased, and redness decreased. The processing temperature and % $CO_2$/juice ratio significantly affected high pressure $CO_2$ processing of the juice in terms of pasteurization, PE inactivation, cloud increase, and color change. The $^{\circ}Brix$, pH, and TA before and after treatment remained unchanged.

Combined Treatment of High Hydrostatic Pressure and Cationic Surfactant Washing to Inactivate Listeria monocytogenes on Fresh-Cut Broccoli

  • Woo, Hyuk-Je;Park, Jun-Beom;Kang, Ji-Hoon;Chun, Ho Hyun;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1240-1247
    • /
    • 2019
  • This study was conducted to examine the inactivation effect of the combined treatment of high hydrostatic pressure (HHP; 400 MPa for 1, 3, and 5 min) and cationic surfactant washing (0.05% benzethonium chloride, BEC) against Listeria monocytogenes inoculated on fresh-cut broccoli (FCB). Washing with BEC at concentrations exceeding 0.05% resulted in 2.3 log-reduction of L. monocytogenes counts on FCB, whereas HHP treatment had approximately 5.5-5.6 log-reductions regardless of the treatment time. Scanning electron microscopy corroborated microbial enumeration, revealing that the combined treatment was more effective in removing L. monocytogenes from FCB than individual treatment with HHP or BEC. Color and total glucosinolate content were maintained after the combined treatment, although the hardness of the FCB slightly decreased. The results clearly suggest that the combined treatment of HHP and BEC washing has potential value as a new sanitization method to improve the microbial safety of FCB.

Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats

  • Hyung Kyu Kim;Jiyeon Jun;Tae Wan Kim;Dong-ho Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.481-491
    • /
    • 2023
  • The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.

Modeling the Chemical Kinetics of Atmospheric Plasma

  • 김호영;이현우;김규천;이재구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.270-270
    • /
    • 2012
  • Low temperature atmospheric pressure plasmas (APPs) have been known to be effective for living cell inactivation in the water [1]. Many earlier research found that pH level of the solution was changed from neutral to acidic after plasma treatment. The importance of the effect of acidity of the solution for cell treatments has already been reported by many experiments. In addition, several studies have demonstrated that the addition of a small amount of oxygen to pure helium results in higher sterilization efficiency of APPs [2]. However, it is not clear yet which species are key factors for the cell treatment. To find key factors, we used GMoo simulation. We elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation with using GMoo simulation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that cause chest pain and damage lung tissue when the density is very high. H2O2, HO2 and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  • PDF

Clostridium botulinum and Its Control in Low-Acid Canned Foods

  • Reddy, N. Rukma;Skinner, Guy E.;Oh, Sang-Suk
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.499-505
    • /
    • 2006
  • Clostridium botulinum spores are widely distributed in nature. Type A and proteolytic type B bacteria produce heat-resistant spores that are primarily involved in most of the food-borne botulism outbreaks associated with low-acid canned foods. Food-borne botulism results from the consumption of food in which C. botulinum has grown and produced neurotoxin. Growth and toxin production of type A and proteolytic type B in canned foods can be prevented by the use of thermal sterilization alone or in combination with salt and nitrite. The hazardousness of C. botulinum in low-acid canned foods can also be reduced by preventing post-process contamination and introducing hazard analysis and critical control point (HACCP) practices during production. Effectiveness of non-thermal technologies such as high pressure processing with elevated process temperatures on inactivation of spores of C. botulinum will be discussed.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

사여과수에 존재하는 우점세균의 중압 자외선 램프 소독능 (Disinfection Efficiency of Medium Pressure UV Lamp on Major Bacteria in Sand Filtered Water)

  • 안승구;양윤용
    • 대한환경공학회지
    • /
    • 제32권12호
    • /
    • pp.1141-1146
    • /
    • 2010
  • 상수공급계 모래여과수에 존재하는 종속영양 호기성 세균을 NA 및 TSBA 고체배지로 분리하고 군체의 형태 및 색체로 구분 정량하여 우점종 8종을 선정, 정제하고 Sherlock System으로 동정하였다. 이들 각 종류의 세균에 대하여 액체배양한 후 세정하여 $10^6{\sim}10^7\;cells/mL$ 증류수 현탁액을 조제하여 CBD 중압 자외선 램프로 0, 5, 16, 40, $60\;mJ/cm^2$ 조사량으로 조사한 후 희석, 평판배지에 접종 배양하여 생존 세균농도를 정량하여 불활성화율을 평가하였다. Gram 양성균으로 Bacillus subtillis, Bacillus megaterium, Rhodococcus erythropolis, Microbacterium laevaniformans 등이 Gram 음성균으로 Pseudomonas pseudoflava, Pseudomonas vesicularis, Alcaligenes paradoxus, Zooglea ramigera 등이 동정되었다. 분리된 세균종들은 중압 자외선 조사에 높은 저항성을 나타내었으며, 표준균주보다 강하였다. 또한 Gram 양성세균이 Gram 음성세균에 비해 월등히 강한 내성을 나타내었다. 중압 자외선 램프를 상수처리장의 소독목적으로 도입할 경우 $60{\sim}100\;mJ/cm^2$의 조사량으로 높여 조사하여야 할 것으로 판단된다.

초고압 처리한 좁쌀약주의 저장 중 미생물수, 효소활성 및 품질변화 (Changes in Microbial Counts, Enzyme Activity and Quality of Foxtail Millet Yakju Treated with High Hydrostatic Pressure During Storage)

  • 임상빈;좌미경;목철균;박영서
    • 한국식품영양과학회지
    • /
    • 제33권3호
    • /
    • pp.576-581
    • /
    • 2004
  • 좁쌀약주를 열 또는 초고압으로 처리한 후 10∼37$^{\circ}C$에서 64일간 저장하면서 저장기간에 따른 미생물수, 효소활성 및 품질변화를 측정하였다. 열 또는 초고압 처리구의 일반세균 수는 1$0^{\circ}C$$25^{\circ}C$에서 약 $10^2$ CFU/mL로 저장기간 동안 큰 변화가 없었지만 37$^{\circ}C$ 저장에서 열 처리구와 상온 초고압처리구는 저장 55일, 고온 초고압처리구는 저장 25일 이후에 검출되지 않았다. 열 또는 초고압 처리구의 젖산균과 효모는 처리 직후 완전히 사멸된 후 모든 저장온도에서 저장기간 내내 검출되지 않았다. $\alpha$-Amylase의 상대활성은 1$0^{\circ}C$에서 저장하는 동안 무처리구와 상온 초고압처리구는 약 100% 이상으로 높은 값을 유지하였으나 열처리구와 고온 초고압처리구는 약 40% 이하로 낮은 값을 유지하였다. 반면 $25^{\circ}C$와 37$^{\circ}C$에서는 무처리구와 상온 초고압처리구의 상대활성이 급격하게 감소하여 열처리구 및 고온 초고압처리구와 비슷한 수준을 유지하였다. 무처리구와 상온 초고압처리구의 glucoamylase 활성은 1$0^{\circ}C$에서는 거의 변화가 없었지만, 저장 온도가 높을수록 감소폭이 더 컸다. 열처리구와 고온 초고압처리구는 1$0^{\circ}C$$25^{\circ}C$에서는 저장기간에 따라 활성이 다소 증가하는 양상을 보였으나 37$^{\circ}C$에서는 거의 변화가 없었다. 열처리구와 초고압처리구의 pH는 모든 저장온도에서 저장 기간 동안 변화가 거의 없었다. 열처리구와 초고압처리구의 탁도는 저장기간 동안 저장온도의 증가에 따라 증가하였으나. 무처리구의 탁도는 저장온도 $25^{\circ}C$에서 저장 34일 후부터 급격히 증가하였다. 열처리구와 초고압처리구의 환원당 함량은 저장기간 동안 저장온도의 증가에 따라 증가하였으나, 무처리구의 환원당 함량은 저장온도 $25^{\circ}C$에서 저장 34일 후부터 급격히 감소하였다.

초고압처리에 의한 연해주 대두분말의 저장기한 중의 산패도 변화 (Effect of High Pressure Processing on the Rancidity of Yeonhaeju Soybean (Bazaz) Powder during Storage)

  • 이수복;엄병현;윤원병
    • 산업식품공학
    • /
    • 제15권3호
    • /
    • pp.209-213
    • /
    • 2011
  • 대두에서 산패취를 발생시키는 lipoxygenase 효소를 비가열 전처리 방법인 초고압 처리 방법을 이용하여 효소의 활성도의 변화를 확인하였다. 연구 결과 초고압 처리에 의해 lipoxygenase 효소의 활성도가 감소하는 것을 확인하였다. 또한 lipoxygenase 효소의 활성도 감소에 의해 대두의 저장성에 미치는 영향을 확인하기 위해 국산 대두와 연해주대두를 이용하여 저장 실험을 실시하였다. 실험 결과 국산대두의 경우 초고압 처리에 의해 lipoxygenase 효소의 활성도가 감소하였으나 TBA가에 영향을 주는 자동산화등의 화학반응에 의해 TBA가가 지속적으로 증가함을 보여주었다. 그러나 연해주 대두의 경우에는 초고압 처리를 한 시료의 TBA가의 증가정도가 상대적으로 낮게 측정된 것을 확인하였다. 이는 연해주 대두가 항산화 성분을 국산콩에 비하여 많이 포함하고 있어 초고압 처리에 의한 lipoxygenase 효소의 불활성과 함께 항산화 성분의 영향으로 TBA가의 저장 중 증가 정도가 낮게 측정된 것으로 판단되어진다.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF